AD-A154 235

UNCLASSIFIED

IMPLEMENTATION OF A PROPOSED SYSTEM FOR AUTOMATED

MICROCODE GENERATIONCU) NAVAL POSTGRADUATE SCHOOL

MONTEREY CA M E PROVANCE DEC 84 £/6 9
/2

1/2 .

e ——
———
————
—

N
(3

FEEFEEEE

4
Fe

m
20
i

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

.

{“7_"‘fvr'-‘f.-—~;' RS A S APt e

S TR R —— ARG DAt gl Bucdh M AR meoct Jeaer mam s 2

R Mgl S b, Jandt Bt Jeass Jaadh Jend See g

Monterey, Galifornia

S NAVAL POSTGRADUATE SCHOOL
A
S ¢

THESIS

IMPLEMENTATION OF A PROPOSED
SYSTEM FOR AUTOMATED
MICROCODE GENERATION

by

Marcia Elaine Provance

December 1984 :fj

-
Thesis Advisor: A. A. Ross .

Approved for public release; distribution unlimited =

DTIC FILE COPY

......................
~~~~~~~

---------------------------------------------
.....
DR




UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Dais Entered)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

ORT NUM 2. GOVY ACCESSION NO,

AlSHY 235

3. RECIPIENT'S CATALOG NUMBER

4. TITLE (end Subtitle)
Implementation of a Proposed System
for Automated Microcode Generation

8. TYPE OF REPORT & PERIOD COVERED
Masters Thesis
December 1984

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s)
Marcia Elaine Provance

8. CONTRACT OR GRANT NUMBER(s)

|5, PERFORMING ORGANIZATION NAME AND ADORESS

Naval Postgraduate School
Monterey, CA. 93943

10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

11, CONTROLLING OFFICE NAME AND ADDRESS

Naval Postgraduate School
Monterey, CA. 93943

12. REPORT DATE

December 1984

13. NUMBER OF PAGES

128

YT MONITORING AGENCY NAME & ADORESS(!! ditferent from Controlling Office)

1S. SECURITY CLASS. (of this report)

UNCLASSIFIED

18a. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of thia Report)

Approved for public release; distribution unlimited

17. OISTRIBUTION STATEMENT (of the sbatract entered in Block 20, If different from Report)

19. SUPPLEMENTARY NOTES

19. KLY WORDS (Centinue on reverse side If necessary and identify by block number)

Digital Implementation

Microprogramming, Functional Design, Computer Control Units,

20. ABSTRACT (Centinue on reverse side If necessary and identify by block number)

This system is designed around the goals

which are presented to a microprogrammer

This thesis develops an automated microprogramming system.

of usefulness,

usability, and security. The problem of mutually-dependent
fields in a vertically formatted microinstruction is addressed,
and a solution to this problem is presented. The proposed
microprogramming system is organized around a series of menus

so that she can build

DC -"Sn'3s 1473  coimion oF 1 nov ¢8 13 oBsOLETE

UNCLASSIFIED

$/N 0102- LF-014- 6601

SECURITY CLASSIFICATION OF THIS PAGE (ﬁcn Data Entere:

1

SRRy

o e N !
PR
R IN YIDTP S

.
R
.
‘a‘a’s

i

. ’
. e
o ]

oS

Ve e .
el .

. ,
'A,A‘L‘A‘l L




SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

yMmicroroutines by working on each microinstruction at a high

=T AN N A A

.

- _UNCLASSIFIED

A

i

N abstract level.‘\

EERNS | A

e
L

s

T

ERCACAUAUAPARY | b BN

ial |
A

L
”
* /
(-]

.} Accession For y,
NTIS GRAAI Y
DTIC TAB 0

Unannounced 0
Justificatio

By
| Distr'iation/
L'§Y§}lxbility Cadqg__

~¥nil and/or
B.e< . Epecial

M

t v

TS N 0102- LF- 014- 6601
UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Ents ~d)

D e B T L NN T L SN S
e e T

At e L Te e N L
O}

" B R . .
. " o, e, - -y . A . RS .
o .-’\Q".-c PR R LR N PPN ;_ AL AL A R

F O WA R

.ttt e,
»* AL
PP I
'y % ‘e 4
2l glatoly

-y

.

ol

PR
e
PPN
PRI )

AL i -
LA N
W] i

]




v T PR LT T T

LA A )

N

<

s

al

-'4".
. e Lt

PRI

a

e a"

............. Sr et el
Tt e At e Lo g(-“' PP PLPR - AP CI ACAEIY W PO S R

Approved for public release; distribution unlimited

Implementation of a Proposed System for Automated
Microcode Generation

by
Marcia Elaine Provance

Lieutenant, United States Navy
A.B., Pennsylvania State University, 1978

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN INFORMATION SYSTEMS

from the
NAVAL POSTGRADUATE SCHOOL

December 1984

Author: L auaso & gfgyy

Approved by: de—r; @ Ro-d&

3:::\ Thesis Advisor
Wik

Second Reader
bl 10 n

Chairman, Department of Administrative Sciences

Dean of Informafionuisf Policy Sciences

....... - N e - L
. --'q'- LA PR A T A T ..’.. DT IR Y

.................................

PR P TP ol P PO



ABSTRACT

This thesis develops an automated microproarammina

system., This system s designed around the aoals of useful-
ness, usability, and security. The problem of mutually-
dependent fields in a vertically formatted microinstruction
is addressed, and a solution to this problem is presented.
The oroposed micronrogramming svstem is organized around a
series of menus which are presented to a microproarammer so
that she can build microroutines by workina on each micro-
instruction at a high abstract level.
=
S
N
s
."'1
]
d
4 .o
-
]
ASIITASIIEhY T T A T e A I G L L S LR S UL S SV VU VO,




ITI.

IITI.

Iv.

TABLE OF CONTENTS

DESIGN APPROACHES TO COMPUTER CONTROL UNITS —--—----
A. DESIGN OF HARDWIRED CONTROL UNITS ---—ve—ee——-
B. DESIGN OF MICROPROGRAMMED CONTROL UNITS ====~-
C. ADVANTAGES AND USES OF MICROPROGRAMMING ==-——-
MICROPROGRAMMING METHODS ===eece e cec e
A. DIFFICULTY OF MICROPROGRAMMING =--meemceceae——-

B. LEVELS OF ABSTRACTION IN PROGRAMMING LANGUAGFS
C. LOW-LEVEL MICROPROGRAMMING ——-—--—c-meememm e
D. HIGH~-LEVEL MICROPROGRAMMING LANGUAGES —=—===—=--

E. CRITICISM OF HIGR-LEVEL MICROPROGRAMMING

LANGUAGES ~— == m e e e
PROPOSED MICROPROGRAMMING SYSTEM —-eeemmemmeee e
A. GOALS OF THE SYSTEM e e =
B. THE TARGET MICROPROGRAMMABLE MACHIME -----—----

1. The AM29203 Evaluation Board ~———-cec—eeee--

2, AM29203 Evaluation Board Microinstruction

Format -------—=rcm e e e
C. ENVIRONMENT OF THE SYSTEM —-ecemmcmem e e e
D. STRUCTURE OF THE PROGRAM =-ceeeeceeeccc e ce e -

USING THE PROPOSED MICROPROGRAMMING SYSTEM ——w—-w-

A. DESIGN PROBLEM OF THE AM2904 SHIFT/STATUS

CONTROL CHIP ———=-—=memmmm e ecmmmcmm e
B. UPPER-LEVEL MENUS =—~—-~—-m—mm e
C. THE AM29203 ALU MENMS =——m——m-—m——mmmmmmmmom




D. AM 2910 SEOUENCER PORTION OF THE MICRO-
INSTRUCTION ~ o mmm e e e e e mmmeome 107

E., MEMORY COMMANDS AND MESCELLANEQOUS FUNCTIONS -- 115

v. SUMMARY, QUESTIONS, ANND FUTURE RESEARCH —-==-ce—-—e—--- 119
A, SUMMARY OF MIDTUALLY-DEPENDENT FIELDS —-mcec—ecaemao 119
B. STATUS OF PROJACT --==m=ccomemccmmmmmmmemm e 123
C. AREAS OF OUESTION ——=-————mm oo 124
D. FUTURE RESEARCH ===c-===—co—mocmmmmommmmmmom o 125
E. CONTRIRUITIONS OF RESEARCH —cccmmmccec e e 126
LIST OF REFERENCES === === mm oo oo eemmemmme e - 127
INITIAL DISTRIBUTION LIST ~-————=—=———m—m oo 128
]
]
6 3
»
._1




I\ AL IRt s - i S Sl Sl A e AT A, S S ANC ML R A s v S A i R R CE At D SR AR S

TS e e
I AR

ACKMOWLEDGFMENTS

I would like to thank two people for their swecial
assistance during my studies at the Naval Postgraduvate
School. The first is Capt. Brad Mercer, USAF, who first
introduced me to the background theory found in this thesis.
I thank him for his great classes and for reading my thesis.
The second perscon is Dr. Paula Strawser who taught me how to
microcode, offered software engineering ideas during the
design phase of this thesis, and also offered her comments

on tite final version.

R
fet %t e N e T S

BRI
WAt et e
N o P T T
At . ot e tate e . T R BRI
PG L VARSI W WS YRR YR PP O W WAL WA WAL W W WA MRS W AL WA T & B W A A ¥

S
. °r
[}

Y
PP PRI




I. DESIGN APPROACHES TO COMPUTER CONTROL UNITS

The discipline of Computer Science has evolved as the
result of repeatedly applying two approaches to the solution
of problems. The first approach is the decomposition of the
entire problem or application into small, more manageable
pieces; the second approach is to find a simpler algorithm
for the application.

The decomposition of a problem can be done with two
ﬁethods. The first is to see the application as a series of
levels: The top level provides an abstract explanation of
the application, and each lower level explains the applica-
tion with an increasing amount of detail and complexity.

The second method is to divide the application in;o separate
components and to analyze each component in increasing
detail.

An example of the division of a system into separate
components is the traditional decomposition of a von Neumann
digital computer into the five sections of control,
arithmetic and logic, storage, input, and output. Each of
these blocks can then be examined in detail or implemented
in various ways which will not impact the other four
remaining blocks. For example, the control block of a
digital computer can be implemented using a hardwired config-
uration of gates and flip-flops or with a technique known as
microprogramming. The implementation of a method of storage

8

-
.t et ettt
o a e o8 o5 o R o8 o N

e -\-..‘...".“--\‘
ARV POPER PR T ¥

PR

LA
falalalale o d

DRI B I

R
S

" _‘J




R T .

or input/outout operations will not be affected bv the
choice of control unit.

This example of control unit Aesian can be extended to
explain the second aporoach to achievina order and simoli-
city in digital svstems. Microprogrammina was oriainally
develored as an attempt to find a reqular and orderly hard-
ware method to replace the jumbled mass of gates, flipo-flops,
and connections in a hardwired control unit. [Ref 1: p 1591
Microproarammina should also improve a computer enaineer's
efficiency by providina an orderly and flexible desian tool
for the control block. An obiective of this thesis will be
to explore reqular and ordered techniques for expressino
microorograms. As a framework for the detailed dcscriotion
of microoroarammina, the next section describes the control

unit of a von Neumann diagital computer and its harAdwireAd

implementation.

A, DFSIGN OF HARDWIRED CONTROTL, UNITS

A digital computer, from the user's point of view, is a
problem-solving machine. The user supplies inout data, a
switch is thrown, and output is produced. A more concrete
view is held by the computer enaineer who sees the svstem as
an elaborate array of interconnected flip-flops and loagic
gates which transfers information around the svstem. [Ref
2: p 41 A computer scientist's view of a diaital svystem is

a comhination of the abstract and concrete views, She knows

PRI AR T A TR 21 Art) A s s a0 goulh il Gun ardn pidh il - Rout o ic-aint Satl sl VG mouts Sutis atvll SbED




that the computer consists of hardware structures made from
the engineer's flip-flops, gates, and logic paths; however,
the computer scientist also realizes that the purpose of the
computer is to interpret and execute user-written
instructions which will access user-vrovided data in order
to solve the stated problem. The responsibility of
directing this problem solution belonas to the control unit.
This job can be described as information transfer amona the
five functional units of the computer. This information
transfer will decide which instructions to execute, what
data to use as operands, and which hardware components to
activate. The control unit communicates with control
signals which choose the correct data path, and it activates
specific logic gates and flip-flops. [Ref. 3: p 521

Information transfer can best be explainedA hv analvzina
the instruction interoretation and execution cvcle of a
stored program computer., A sample proaram and hardware con-
figuration will be used to assist the exvlanation. The
example user problem is to add a constant 2 to a 2 stored at
a memory location and store the result back into memorv. 1In
assembly and machine lanouage for a hvpothetical machine,
the instructions and their direct addresses in main memorv
might be as follows:

ADDR Assembly Inst Machine Inst

Proaram storadge

000 LDI 002 001 0ln
001 ADD 004 010 100
n10 STR 005 011 101

10

- P I e e N PR - - PRI LI NP R ST O - .
PSP Bl Wil SLAPUL TP, LI PRSP AP AP LIPS LA P IS Y e PO VORI TP PR P I I WP T ) FWE 1

AEIA




T YT T YTy

=]
ﬂ
011 STP 000 100 000 W
Data storage -
100 000 002 000 n10 L

101 000 000 000 0nn

This program will load the constant 2 into the
accumulator,
location 004,

005, and stoo execution.

Slatul o MBAse_atan Sesui tess A duse Jova

add to the accumulator the contents of memory

store the resultant sum into memory location

The sample hardware configuration is found as Ficure 1.
The simnle computer consists of a main memorv, a control
unit, an arithmetic and loaic unit, and five smecial nurwose

reaisters.

/
ALU
MAIN
MEMORY AC
]
MDR
2
PC IR
MAR CONTROL
UNIT
Figqure 1 [Ref 5: p 2A9)]
fample HarAware Configuration :1

These reqgisters are the instruction reqister .

11 ]

T R T AT ST N S S S S LI O R TSP I
P P T P A TS AT T T T S A T N A A S A N G




replaced, and the underlying computer organization is not
affected. A computer can also respond more easily to new
per formance demands and problem solutions. A richer or a
larger instruction set can be implemented, and a more
responsive system is ready to start work.

Other advantages of microprogramming include change-
ability, economy, and ease of education. It is possible to
have more than one instruction set resident in a single
digital computer. It is also possible to allow for numerous
architectural characteristics to be chosen and implemented.
This is accomplished by having more than one control memory
containing microprograms resident within the system. The
programmer would be able to choose the hardware
configuration or the instruction set which best matches the
performance criteria of her problem. The economy of
microprogramming is a result of its simplicity. Since there
is less circuitry in a microprogrammed computer, less
sequential logic will need to be procured in order to
implement a rich and full instruction set. The systematic
design approach taken for microprogrammed control units may
also reflect a savings in design time. The simplicity and
order in the internal circuitry of a microprogrammed machine

and the methodical techniques used in its design make it

easier to teach microprogramming to system designers and
engineers. Flowcharts and microprograms written in symbolic

languages are the tools for the microprogrammer; the :d

25

. .. .
A
PR

N
e e e e
N o WA )

D T S e e .. - et . e Tt e T e e T T T T e

Pt m T e e e e T N e e T T . LR . n S et - ..t ~ . ST N
R S I R IR WA N T WO AN N SV A PRI P S P S . - LR, W St St ioan ot am n te e o T s s e e ala’a atatadatata ,,J




e o o e e e e e sres aras aren B ara s Aras s e g o e e s oy a0 e g

. . Y "R IPERE Al ENA AL A S e

in terms of internal hardAware, organization, and structure;
but each computer contained a comprehensive instruction set
that could be used bv anv family member to interpret and
execute machine lanauage instructions. This idea by IBM
started the use of a concent known as unward and downwarAi
compatibility.

Another exploitation of the flexibility of microoroaram-
ming is in the transformation of a general purpose computer
into a specialized problem machine. In a hardwired compbuter
it is the responsibility of the programmer to tailor the
system to solve her oproblem by using numerous aeneral
purpose instructions. If a specific problem needs to be
solved many times, it can be placed in the hardware by beina
microprogrammed. With the use of a micropnroarammed control
unit, a microorogrammed subroutine would he implemented
inside the control store as one microprogram with a sinale
corresponding machine langquadge instruction. The hardware
would then better support the proarammina environment, and
oroorammers would find oroarammina a more efficient task.

Microprogrammed control units are also easier to develop
and maintain. The substitution of simple, repetitive memorv
structures makes the design process easier. Also, concepts
used in software engineering such as modularity, information
hidina, and structured programming can be applied to the
creation of microprograms. It is easier to maintain and

improve microprograms since only the control store 1is

24

N e N T e e e e e
R N LA AL

T

[4

e el et T e e e e T, e e
PP PRI IR Y Y AL D P PRLE . D P QAA‘O.l.i.-lIl-.-I-.~l~I-I-I-l- -|

St
R
PR




bl Tt S AN AT AR A TR A A i I S0 R Sl i SR i e o - R Vit i 4 Mgk Jdn sl SR MG Rt JaE

definition of microprogramming that relates it to an analy-
sis of levels of abstraction. Microprograms contain
information that control hardware at a primitive level, and
these microprograms are stored in a special memory and
sequenced as stored programs. A computer will be termed
microprogrammed if the instructions which are directly
fetched, decoded, and executed correspond to the primitive

operations that the machine performs. [Ref. 7: p 4]

C. ADVANTAGES AND USES OF MICROPROGRAMMING

Since the inception of microprogramming in 1949, advances
in memory technologies have provided advntages for control
unit design and have provided many uses for microprogramming.
Several sources point to the advantages of microprogramming
as the design method for control units. The primary advan-
tages are flexibility and maintainability. It is very easy
to add a machine language instruction to an instruction set
or to change the entire instruction set in a microprogrammed

system. All that is required is for a new control store to

be designed which will hold the improvements and to replace
the old control store. All other circuitry and hardware ")
within the computer system will not be affected. [Ref. 7:
p 5; Ref. 2; p 72]

IBM was one of the first organizations to exploit the }1
flexibility of microprogramming when it designed the System/ %

360 family of computers. All of the family members deffered

23

B N T D TR N N SR T L P o o

B T L T R T T e R
o LI TR ATRIE AL LN - N T TR T R T e P T J RN
IR IR PR P PR S WA Ui YA, TR, S B, . S A A Ty SO T S )

RO VRN WA AT DA T I SIS AL R S I S, )




M s 2 B I e A e e e B TN A SM S e A AT RIS SUM G AU S I N e A A ey

line passes into the first random access memory, called a
rectifier matrix by Prof. Wilkes. The outputs of this
matrix are the control signals which operate the various
gates and flip-flops associated with the micro-operations.
The output lines of the decoding tree also pass into
rectifier matrix B, and its outputs are connected to
register I1. The contents of register II are the address of
the next micro-instruction to be executed. Before the
control pulse is applied to the decoding tree, the contents
of register I1 are transferred to register I. the decoding
tree is now ready to provide Matrix A with the address of
the next micro-instruction whose output will be the next set
of control signals for the various hardware components.

This application of clock pulses alternatively to the input
of the tree and to the connection between register I and II
causes the predetermined sequence of microinstructions to be
executed. [Ref. 1l; p 159]

A succinct description of the above process is provided
by Hayes. Microprogramming is a method of control unit
design where control signal selection and sequencing
information are contained in a random access memory. The
control signals which are to be activated at a particular
time are specified by the micro-instruction which has been
fetched from the control memory. Each microinstruction will
also specify the address of the next microinstruction to be

executed. [Ref. 5; p 271] Rauscher and Adams provide a

22

----------




The micro-control unit is shown in Fiaqure 4; it consists
of a decoding tree, two random access memories, and two
reaisters. A series of clock pulses will be generated and
applied as an input to the decodinag tree; the output acti-
vated from the tree depends upon the contents of register I.
This action corresponds to step 2 of the instruction inter-
pretation and execution cvcle; this is how an obiect code

instruction is decoded by the microprogram. The output line

FROM IR
REGISTER II
g
REGISTER I
i --------
MATRIX A MATRIX B
LiL Ty
1 e e
- -
DECODING ——
— —3 N
CONTROL TREE R e
PULSES . .
1 i
0 ALU
CONTROL REGS
CONTROL SIGNALS CONDITIONAL
FLIP FLOP

Figure 4 [Ref. 1: p 159)
Wilkes' Oriainal Desian of a Microprogrammed Control Unit

will contain the address within the random access memorv
which is the first micro-instruction of the microprogram for

the object code instruction found in the IR. This outout

21

- . - » ..- I e q..v - PR - R
- . - - - - L] - - . - - - . - - - - - . . . - - - N
P S T R T, . - R T O P
A A e e e A AR . K R

Cad " * -t~
e et e Rt et :

A R N AL “
N PP A R L W A R RPN P P Y

o
Y

o . e e
D . .

f P
T At T e T
Ak nd ad e

Ce’
& s a

bk




micro-operations; examples of micro-operations are PCoyut:
MARjn, and ACCjp. Basic machine overations like

addition are made up of a microprogram of micro-overations.
Those micro-overations which take place during the same
clock pulse are placed into the same micro-instruction. The
process of writing a microprogram is similar to writina an
application program in machine language. [Ref. 1l: p 15R]
This idea places microprogramming not only in the realm of
hardware desian but also into the areas of concern for
software engineers. Consequently, concepts like information
hiding and hierarchical, modular desian can be used to
advantaqe in microprogrammina.

For microprogramminag to work, certain hardware structures
are required. The machine must contain a vermanent raoiAd-
access storage device which will hold the microprogram.
Means are also required to determine and effect the sequen-
cing or order of the microinstructions for both sequential
and conditional control flow. A microprogrammed svstem
consists of two parts. The first is the control reaister
unit; this is a group of registers and the ALU together with
a switching system which enables transfers to be made. The
second part is the micro-control unit; its concern is to
control the sequence of those micro-instructions reqguired to
carry out each object code instruction and to cause the

proper control sianals to be generated.

20

. e e C L s e . E e e s e ettt et e
R WR e et e e T e T e m T et et e T e e e R LT P S ST S R L PR ST S ST ST L BPE SETE S ORI ot
T et =, D S R N T L AL AT AU S W A S RIS I N
A .

. -, - - - - . - . - . ., . P .~ - . P ... - -...-
e ) 3 3 LI b R IR TP ISP DA IS I P S SP AP O 2P AP I I ISP RIS AN ISP SENEN NP




N e S i e S T AL D I e e e D A e e e g o

since, most often, the entire control unit must he redesianeAd
and replaced. The desire to incorporate order, modularitv,
flexibility, and maintainabilitv in control unit desian

leads to the develooment of a different type of control

unit.

B. DESIGN OF MICROPROGRAMMED CONTROL UNITS

In 1949, Professor Maurice V. Wilkes of the University
of Cambridae set out to find a better wav to oraanize the
control functions of a digital computer system. At that
time, Wilkes invented the method of control unit desian
known as microprogramming. Wilkes' design goal was to eli-
minate the randomness of control logic and replace it with
an orderly logic matrix. The concept of microprogrammina
makes it easier to understand the control function and to
build hardware because it replaces the complex circuitry
with a revetitive, ordered arrav of memory cells. .In addi-~-
tion to reducing complexity, microproaramming aives digital
systems new flexibility; the control flow can be chanaeAd
without redesigning the hardware. [Ref. 3: o 54]

The best illustrations of what microproaramming really
is and how it works come from the original work published by

Maurice Wilkes. His description beagins with definitions.

The operation called for by a single machine instruction can
be broken down into a sedguence of more elementary overa- -

tions. These elementary operations are referred to as

19

M L h P I e s v
S AP . s,
et ER A A

[N o g PER Y

RN
)
PPN ]

2 .

...........
. .




LU S T e et e ,_'D T ——— P Lt A St S e o e i i

The ad hoc construction of the encoder and decorder
results in complexity which will increase in provortion to

the size and completeness of the machine languaage instruc-

s, s

2

tion set. An unmanageable and confused tangle of gates and

L3
-
.
»
.
.
L]
Ve
»
)

interconnections often results from the minimizations of the
logic equations and the ad hoc combinations and uses of

gates, flip-flops, their interconnections, and the size of

CONTROL

STEP

CLOCK COUNTER

TIMING

DECODER

T, TH T,
™S 1 ",
3 s
INSTRUCTION| INS 2
IR DECODER | ] ENCODER FLAGS
CONDITION

s 3 CODES

N

CONTROL SIGNALS

Figure 3 [Ref 4: p 1121
Hardwired Control Unit

the instruction set. The resulting hardwired control units
are difficult to test and maintain since the control unit

has no order or reqularity. Changes are also expensive

18 .




e e e T T T A T S T . NN MRS At A A S S IR BRGNS R A e ol S SIS S Teeh Skt S

or execution; the step of the cycle where the control signal
must be generated; and the presence and state of condition
codes necessary for signal activation. Our example will be
the control signal for the end of a program. The END
control signal will be generated for the instructions which
require it, within the specified clock cycle, and with the

testing of the needed condition code. The logic equation of

an END is END = Tg * ADD + T7 * BR + (T7 * N = T4 * BRN + ...

ADD BR . BRN

]
=z}

Figqure 2 [Ref. 4: p 113]
Implementation of Logic Equation

The physical implementation of the above equation is found
as Figure 2. The equations and their physical implementa-
tions are completed for every control signal. All of these
independently-designed logical implementations are placed
into the control unit. A hardwired control unit is shown as

Figure 3.

17 =

Cra et a . WY e e A e
AR A PR
A R CIR AL G SRt AN




signals into another set of unique signals which will effect

AP AN
DS |

" the opening and closing of gates on the selected data paths.
_I- [Ref. 3: p 52]

A third description of a hardwired control unit is as an

. assemblage of interconnected combinational and sequential
networks that function as a finite state machine. [Ref. 6:

p 3] Hayes' state table approach would be used for this
control unit. The main points about hardwired control units
to be remembered are the unique nature of the pattern of
bits for each instruction and the instruction-unique control
signals which are generated after decoding the object
language instruction.

Hardwired control units are designed in an ad hoc manner
with the computer designer reducing logic equations and
drawing block diagrams until a satisfactory arrangement is
found that meets the cost, schedule, and performance
requirements. The process of deriving the equations and
their logical implementation will be described. First, all
of the control signals which need to be generated to imple-
ment all the machine language instructions in the computer's
repertoire are listed. Examples of some of these are

PCoyts MARjn, Read, Write, MDRy,+, and END.

Multiple combinations of the following three items will be
listed for each control signal belonging to the target iER
digital computer being designed: Each instruction which B
S
required that specific control signal for interpretation .
r
]
16 ﬁF
<
.~?‘\
Y
-
...‘.'.'.‘ -,'-_-'-‘,\_.\).\_.\ _l".l:'-n".'x.'.'-.')"\:' PRI AR P AR TR Y '1:\-"‘4-'.‘;4‘ e et e .;q‘a“:l- IR IA VR R A '1.1




the order specifieé by the above cycle. These control
signals in the proper sequence effect the interpretation and
execution of user-provided instructions. It should be noted
that the first two steps for every instruction are the same;
this is the interpretation portion of the cycle. Mainly,
this cycle changes a static machine into a dynamic problem-
solver. Two techniques have been applied in the design of
control units so that this transformation can be made; they
are hardwired control units and microprogrammed control
units.

Hayes describes hardwired control units as those that
use fixed logic circuits to interpret instructions and
generate control signals. There are three possible design
approaches for this type of control unit: 1) the sequential
circuit design of switching theory with the construction of
a state table for the control unit, 2) a method based on the
use of delay elements for control signal timing, and 3) a
method that uses sequence counters for timing purposes.
[Ref. 5: p 245] Patterson alsc provides a description of
hardwired control. In a hardwired control system, a network
of electronic logic is devised that will recognize each
object code instruction in the computer's instruction set;
each object code instruction is a pattern of signals which
are sent to the control unit. This network decodes the

instruction. The control system will transform these

15




.....................

the constant 2 is placed into the ACC. Step 4, perform the
function, and step 5, store the result, do nothina for this
particular instruction.
Step Pulse Logical Physical
3 T4 ACC <= [IR(right)] ACC <= 010
Interpretation and execution of the ADD instruction is
done in the same manner.
Step Pulse Logical Physical
1 Tl MAR <= [PC] MAR <= 001
T2 IR <= [[MAR]] IR <= 010 100
2 T3 PC <= [PC1 + 1 PC <= 010
3 T4 MAR <= [IR(right)] MAR <= 100
T5 MDR <= [[MAR]] MDR <= 000 N10
4 Té ACC <= [ACC) + [MDR] ACC <= 010 + 0nl0
The third instruction, the store, is interpreted and

executed as follows:

Step Pulse Logical Physical

1 T1 MAR <= [PCI MAR <= 011 T
T2 IR <= [[MAR]] IR <= 011 101 ‘3

2 T3 PC <= [PC] + 1 pC <= 011 R
3 T4 MDR <= [ACC] MDR <= 100 fj
TS MAR <= [IR(right)] MAR <= 101 ’

4 T6 enable write signal i%
5 T7 [{MAR]] <= [ACC) [101]) <= 100 i
The control unit of a digital computer is concerned with Ef
the transfer of information by generating control signals in ;§
™3

14 -




- am

of the five steps in the instruction interoretation and
execution cycle mavy require register transfers. The steps
in the example refer to the instruction interoretation and
execution cycle, wh..~ the T's refer to the clock pulse. 1In

step 1, the followina register transfers will take place:

Step Pulse Logical Physical
1 Tl MAR <= [PC] MAR <= 0090
T2 IR <= [(MARI1 IR <=001 010

In step 2, the instruction to bhe executed is determined

by decoding the left half of the instruction register. Fach
instruction in a digital computer's instruction set is
identified by a unique vattern of bits. These bits are
found in the left half of the IR, interpreted by the control
unit, and instruction-specified signals are generated in
steps 3, 4, and 5. 1In the case of the load-immediate
instruction, the control unit knows that the overand is
contained in the right half of the IR, If the instruction
were a load from a memory location, the control unit would
know that an address was contained in the riaht half of the
IR and would generate those control sianals which would
generate a memory access. Also, the PC is incremented in
this step.
Step Pulse Logical Physical

2 T3 PC <=[PC] + 1 PC <= 001

In step 3, the operands are fetched and placed into the

appropriate registers. For the load immediate instruction,

13

............

ML N A S Y B e fut el e a2 A AR AR o Barndiar S B Jap e B e - -
A A N N CACALASIA YA A S A e it it At S LI S I G A 2




(IR) which holds the current instruction, the program

counter (PC) which contains the address of the next instruc-
tion, the memory address register (MAR) which contains the
location in memory to be accessed for a read or write opera-
tion, the memory data register (MDR) which will hold the
data that has been read from or will be written to the main
memory, and the accumulator register (ACC). At the start of
execution, all the registers are cleared to 0.

An instruction can be viewed as a request to the control
unit to generate control signals which activate specific
data paths so that information can move among the functional
units and between the registers. The control signals also
activate the arithmetic and logic unit (ALU) so that desired
functions will be performed. [Ref. 2: p 4] The instruction
interpretation and execution cycle will cause the correct
signals to be generated in the correct order. The cycle can
be decomposed into five steps: 1) fetch the instruction, 2)
decode the instruction and increment the PC, 3) fetch the
required operands, 4) perform the function, and 5) store the
result. [Ref. 4: p 107]

In step 1, the contents of the PC are transferred to the
MAR, and the contents of the memory location specified by
the MAR flow from main memory through the MDR into the IR.
These inter-register and inter-unit transfers can be ex-
pressed in a shorthand known as Register Transfer Language.

One comment must first be made about the steps. Fach

12




- T T T WY v Y w = w e =, = =
P T P S-S ] LY d b - . e . N B A T R
. e TR WL W W VI TR RSN N W WL PNl R C o e . A . B PEIRE N L. . PR - - .

4
o
b

'

hardwired control unit designer will use sequencing and tim-
ing sheets in addition to complicated hardware logic sheets.
The tools will be easier to teach. [Ref. 2: pp 72-75]
Rauscher and Adams provide an outstanding summary of the .
various uses of microprogramming. The first application is
in emulation. With emulation, the instruction set of one
computer is embedded into the control store of a different
computer. The host computer will interpret and execute

machine language instructions as the target machine would.

One current use of this technique is the emulation of new
architectures for research purposes. Another use of emula-
tion is in a software first machine. During the acquisition
phase for a computer system, different machines could be
evaluated by loading their instruction set into a software
first machine and running benchmark programs against each

target computer.

A second application of microprogramming is in the area
of operating systems. Current work in this area has two
approaches. The first is to implement primitives that are
used throughout the operating system as microprograms, and
the second is to implement important portions of the operat-
ing system as microprograms. A third application of
microprogramming is in the support of higher-level language
programs. In this approach there can be many machine lan-
guages for each high level language. Each machine language

would be targeted to a different performance criteria for

26




the high level language. A fourth development is the use of

high-level microprogramming languages. In this application,
a user's program would be written in a high-level language
which would be continuously translated until the lowest
level of language would be microcode. There would be no
interaction between an object code program and
microprograms. The last use of microprogramming pointed to
its use in architecture implementations. FExamples include
pipeline structures, floating point processors, and multi-

and distributed processing. [Ref. 7: pp 16-~18]

I1. MICROPROGRAMMING METHODS

A. DIFFICULITY OF MICROPROGRAMMING

Although Maurice Wilkes developed a more systematic
method for control unit design, microprogramming wasn't used
commercially unitl the early 1960s. During the 1950s, it
was felt that any computer system which would use micro-
programming as the implementation of a control unit would
not meet the speed requirements in terms of instruction
interpretation and execution times. When Wilkes conceived
his different approach to control unit design, rapid access
memories were not available. Advances in the semiconductor
industry solved this problem, and a fast and cheap RAM was

available by the early 1960s. As the amount of information

27

......
o

.
- et PO S S L L P e T Tl e L e e I I - L W T . e
LI 'L’.'L'g'n'L'kL ML\&L‘L".".LLL(‘!‘ QA{S_LI_L.LL:.L PEV T L‘LAL“.J-_‘!:-:A_.

RS B e

Lo

LI RN




R o R T T A R i A e S At s S AV A B SN St M U A e sl A St e i S e Bt RS R R

stored on a chip increased, the price declined, and rapid
access to the microinstructions became possible. Micro-
programming had become practical in terms of hardware. IBM
was the first computer vendor to produce a family of
microprogrammed computers. [Ref. 6: p 56] Since the early
1960s, several other computer vendors have developed
microprogrammed digital computer systems; some of these
vendors are Hewlett Packard, Digital Equipment Corporation,
and Burroughs.

While microprogrammed control units were being imple-
mented by major computer manufacturers, the task of creating
the various microprograms was not easy. Microprogramming is
a very labor-intensive task. A microprogrammer may spend
hours just to optimize, by hand, 10 or 20 microinstructions.
This time-consuming task has become infeasible when the
current size of microprograms is considered. [Ref. 8: 702]
Nothing was automated in the process of creating microcode;
the microprogrammer worked at a very low level with a binary
language. The opportunity for error was quite high, and the

microprogrammer was forced to remember address and bit posi-

tions in their absolute terms instead of using memonics and

symbolic labels. A first step toward automating the produc-
tion of microcode was meta-assemblers, but they still have NJ
left many problems. These problems will be discussed in

section C--Low Level Microprogramming, o

_'
PP W)

el

|

PRt
Lntatalals

’

28

e
o e 0,

0

]




e e N T L N T T I N N TR T Ty e T T T P T T T T T W W LY W e, w v v

The creation of larae microvprograms using high-level
microprogramming languages is a current avpproach to the
problem of creatina large microproarams in a realistic time
- frame. 1In order to provide a context for the discussion of
~ hiagh~level microproaramming languades, a discussion of hiah-
level lanquages and their impact on problem solution is pre-

sented next.

B. LEVELS OF ABSTRACTION IN PROGRAMMING LANGUAGES

A computer system and the oroblem that it will solve can
be decomposed by viewing the system and the specific problem
as levels of abstraction. This concept can best be
explained by looking at the various classes of programming
languagdes. The top-level abstract explanation of the prob-
lem can be done in a higher-level English like Pseudo-code.
Then a high-level computer lanquage like Pascal expresses
the problem in English~like statements which are impossible

for the computer to understand without further translation.

The next level is the translation of the high-level lanauaage

into an intermediate-~level language which is closer to the
- type of lanquage understood by the computer. This inter- =
.ﬁ mediate language is then translated a final time into obiect .

- code. This object code is the lowest or next-lowest level
T of proaramming lanquages, depending upon how it is ’3
f interpreted and executed. If the hardware structures which jk
. _ﬁ
- Y

~1

Ly
a
Ak A

N

29

’
s 1

.
s S

1
N

sl




v
KOAERICASARTACT 2 a0 o o ) ST AL e i A et gl i e v il L - S = S A A A= S

interpret and execute the obiject code instructions are
randomlv-configured loqic aqates and flip-floos, the obiject
code is the lowest level of decomposition. The obiject code
may, however, be further interoreted and the proaram

~ executed after interaction with another level of language

. known as the microprogram. This is the lowest-level
statement of the problem but is a more aeneral low-level
lanquage which interprets each obiect language instruction
statement and activates various hardware structures in order
to solve the target problem.

In the history of programming langquages, the earliest

B

programs were written in machine languages. High-level
languages evolved as a method to make problem statement and
solution easier for people to express and develop. These
higher-level lanaquages require compilers, assemblers,

. linkers, and loaders as translators. These translators

- introduce an overhead cost because of the interaction of the
operating system, the system software, and the avpplication
nroaram. Machine efficiency is reduced because of the

various translations.

e

: C. LOW-LEVEL MICROPROGRAMMING

. Microcode was originally produced, much like machine

! code, with the microorogrammer working in a hinary machine

. lanquage. She would also be responsible for optimizing this
»

30




B .'. W ';‘_ "I'.~‘—"".._‘<’-_.-..\ :‘ N .‘ ‘:~_

microcode by hand. No automated tools or microsystem
software was available. The history of the development of
microprogramming tools and languages parallels that of
application programming languages. The first step was the
production of meta-assemblers which introduced the use of
mnemonics to microprogramming.

Meta-assemblers represent the bits associated with a
particular field of the microinstruction with a mnemonic
name. For example, a mnemonic for the bits representing the
ALU Source fields might be ASOURCE. Creating a microprogram
using a meta-assembler is a two-step process. The first
step is to define the language in terms of the mnemonics and
assign a bits(s) position to the mnemonic. As an example, a
48-bit microinstruction will be used. The last four bits
indicate the flow of control within the microprogram. A
binary 1110, or a hex E, indicates a continue to the next
microinstruction. The mnemonic would be CONT and would
represent a bit pattern of 1110 in bits 44-47. Part of
creating the mnemonics is defining the structure of the
microword. The length of the word is determined, and the
various field meanings and representations are created. A
second part of creating microcode using a meta-assembler is
writing the actual microcode which solves the target prob-
lem. The example of the hardwired control unit design of
adding two and two will be recreated here in the format used
by a meta-assembler to illustrate this approach to creating

microcode.
31

-~ R : Catet e R et et et
D T P e R A T S ) - L S AT S =
- LI . A EARE RN S LT et e AT et T S et
RCIRIE T I SR e T L . . e -,

DS, ool

N R N e

- » * B - .. S - . . . DRI TR o-l..--..‘.-'--‘...'h. - -l'l...‘...\
PN SOV PSPPI SIS  N WRE  wE WARLE AW W AT W W VR DR WL WIE VAT W W Sl WP WA A W W WA )

T Y
S e e

s e T T
et T e
. .
" e . o0t

.
BRI

ORI

L. ‘_"h.

R




0. NOOEY,RAMAB,NOP,RAM,,,,LDIR,RF,RF,CONT

1. . RAMAB, INC, RAM,CIONE, , ,RF,RF,JMAP
2. LDI: NOOEY,RAMAB,NOP,RAM,,,READIR,R1R1l,JZ
3. ADD: NOOEY,RAMAB,NOP,RAM,,,READIR,RA,RA,CONT
4, NOOEY, RAMAB, NOP, RAM, , ,Read,R2,R2,CONT
5. OEY, RAMAB,ADD,RAM,CIZERO,,,R1,R2,JZ
6. Store: NOOEY,RAMAB,NOP,RAM,,,READIR,RA,RA,CONT
OEY, RAMAB, INCRS, YBUS,CIZERO, ,RA,R2,JZ

7. Stop: ,s44+4+4,R8,CIP

This method of creating microcode using a meta-assembler
has the advantage that some automation of code construction
has occurred. The microprogrammer no longer is forced to
remember which bits control which hardware structures; she
may now use mnemonics which suggest the hardware function,
and she is freed from having to remember how many bits
determine the hardware function. This method is still error
prone because the mnemonics are postion dependent. It would
be easy to place the mnemonics out of order, misspell one of
them, or to forget one of the commas. The microprogrammer
is not totally freed from memorization because the mnemonics
must be remembered or written down. Another point that
requires mentioning is that there is a translation phase
involved with this method--the mnemonics must be translated
into microcode. The microprogqrammer is still forced to
state the problem at a very low level. A very good

knowledge of the hardware structures, their control signals,

32

L}
P .

LI P EEY I PR SN . e
,‘.‘.{-'-".'l, O N S S T
el lata s g Aa L KRR .

I
)




TR T e DMCIRE YA AEI S U A AT AR A it el U g A St Sy S Dl e i arir e el avas snis e s (o) S Sl -T

T S

and the microprogramming language is required since design

is done one low-level statement at a time.

D. HIGH LEVEL MICROPROGRAMMING LANGUAGES

Increased demand for systems and applications written in
microcode suggests that a higher-level of abstraction may be
required for microprogramming languages. Three developments
point to this new requirement. The first is a change in the
authors of systems written in microcode. Traditionally,
computer architects were the only people who wrote micro-
code; now people outside of the architectural group, but
still inside the company, need to write microcode for their
systems. A common example is the designers of an operating
system who want to implement certain speed-critical parts of
their system in microcode. These people are interested in
the speed benefits of microprogrammed systems, but they do
not want to learn all the details of the machine which would
be required if a meta-assembler were used. A higher level

microprogramming language would enable a more abstract

problem definition, and the operating systems' designers
could more easily produce microcode. [Ref. 8: p 704]
Another requirement for the use of levels of abstraction in
microprogramming languages is the increasing complexity of

91
1
computer architectures. The primary result of this is f}

RN

larger instruction sets for the macro-level machine language

oy

,
[ e

LrLtL e A
aca A ama s’y ah gt

33

...........
I SR S UL 0. N PR PP RPN VRN AT AERAE LT SRR, = 4 KRN TR A N

ﬁ
N,
A
'
4
3
p
»
{ T
f 1]
..
q
r
r
3
-
‘l
9
¥
N
[
b
L
J
|
.
|
-
J
3
]
.-
2
J
-
o
L'
e
b
]
R g




R It A e e Johe B S S S e S A R LM A S A A AU SV S AR 2R ade K MU b SR e s S L =

........

which will cause more complex and larger microroutines. As
an example, the PDP 11/70 used 256 microinstructions to
implement the machine language while the VAX 11/780 requires
more than 5000 microinstructions. [Ref. 8: p 704] The third
demand for high-level microprogramming languages is the
ability to tailor a computer system. Computer users want to
realize the advantages of transforming a general-purpose
problem solver into one with a specific architecture focused
on their applications. The basic instruction set can be
enlarged or optimized for a particular task. The ability to
microprogram a systea has made this type of refinement
possible. A high-level microprogramming language will allow
the users of a system to perform such tailoring in a
reasonable timeframe [Ref. 2: p 57].

High-level microprogramming languages (HLML) should pro-
vide an increased measure of programmer efficiency similar

to that of other high-level languages such as PASCAL. The

hierarchical structures of HLML may make it easier to
perform global optimizations which provide more of a speed

efficiency than hand optimzations. [Ref. 8: p 704] David A.

Lt t " .

Patterson at the University of California, Berkeley, has ©
developed an ALGOL-derived HLML named STRUM. The goal of

his work was to determine the impact of modern programming

s -

techniques on microprogramming. [Ref. 8: p 700] He wished R
to demonstrate that a high-level language, structured pro- Eﬂ
gramming, and program verification would improve the ;ﬁ
-

34 Ry

o

T

RN

-1

-

e

.
»
.
'
St n

s
o .
.

’

’

s

‘

.

N N L I T P S A S S S IR RN - - -

......




correctness and efficiency of microorograms. Patterson felt
that his research had produced an efficient high-level
lanquage. BHe first pointed out that the use of a HLML made
the production of code easier. Secondly, the code is under-
standable, which is important from the maintenance voint of
view, [Ref. R: p 7041 Microcode is seldom maintained by the
person who created the original version; thus readabilitv is
an important criteria for the code. STRUM also provided the
level of abstraction desired by non-comouter architects and
required for describing complex computer architectures,
Another microprogramming lanquade was also developed at
the University of California, Berkeley, by David A. Patter-
son, Karl Lew, and Richard Tuck. Their qoal with this
lanqguage was to investiadate the possibility of creating an
efficient high-level microprogramming lanauage that would be
machine indevendent. Their first step in this direction was
to produce a machine-independent low-level langquage which
they named Yet Another Low Level Languaaqe (YALLL). [Ref 9:
p 221 The creators of YALLL felt that this was a good first
step beause it would not be difficult for a compiler to
produce YALLL, and optimizers would be able to translate
YALLL into efficient microcode. [Ref. 9: o 221 YALLL shared
the cirteria of readabilitv and understandability; these
same features were found when comparinag early macro-low-

level langquaaes with machine code., [Ref., 9: b 23]

35

N .« .- ..
[ T YL B TSP S Y Y -
L I e P . S . 0 SRS ST o

..........
-, ot et .

el e T e R T SR TR T P A .- R o P -
TR I AT AT N RIS I SR PRI U AR PR YR AU U D PR P Y R, i O L el S




EERSA PO P R b R I R Sl i A R il S S At - Sl Sl e B e g e S o

It is necessary to look at both the advantages and
disadvantages of high-level microprogramming languages.
From the STRUM and YALLL studies, Patterson and his fellow
researchers concluded that rroblem definition and solution
were earier to write and understand in the higher-level
microprogramming languages. This is a reasonable conclusion
considering the precedent in application-directed high-level
languages. The conclusion was also drawn that a problem
definition and solution written and executed using a high-
level microprogramming language would have a speed advantage
over a problem definition written in a conventional
programming language. A reason for this conclusion is that
the final translated version of the high-level problem
solution (the object code) would not have to interact with
general-purpose microroutines to activate the hardware
facilities. A last advantage of high-level microprogramming
languages as seen by Patterson was that they optimized the
microcode. In the research for both STRUM and YALLL, the
resultant microcode was compared against microcode prepared
for the same problem definition either with a meta-assembler
or by hand. In the case of STRUM, the microcode produced
was as efficient as that produced by hand. [Ref. 8: p 705]
In the YALLL study, the code was comparable with that

produced for one of the target computers. [Ref. 9: p 24]

36

- M . N
PR « et e . LY AR I I SO PR L ST T L -‘:&( - - R I R SRR S S I
st M T ettt L, . .. -, S T T, W, D A S S A R PG
P ARSI P P P O TN Tl TS SR, PPN L R P USRI WA I A YR T T Y D D DR

. - o e e e
e e et .
.t T et e T et . .®
e tadalaSar :-'-xj

. . 'l'nll R L
o e B N A R St L
NP PRIV SN R DY W W N SV . a




MRS e e R rTT————— v—.m PO vt i e aie fme dnabe el LB iy ol e T WP Ty -
. PR L TN - EERE D U T i e B -

E. CRITICISM OF HIGH-LEVFL MICROPROGRAMMING LANGUAGES

The practitioners of microorogramming have been slow to
accent high-level microoroarammina languages. It is the
speed of the control unit which determines the speed of the
problem solution. [Ref. 2: p 521 The main criticism about
using microprogramming as the means to generate control
signals is the time reauired to fetch and decode each micro-
instruction before the control signals can be produced.
[Ref. 4: p 251) Speed and efficiency of execution has been
more of a concern with microprogramming languages than with
application programming at the macro level since microcode
is the lanquage level closest to the hardware of the
machine. The sveed of problem solution directlv devends
upon the speed of microroutine interpretation and execution.

When high-level microorogrammina lanauages are intro-
duced for problem solution, this speed disadvantaage is
compounded. The primary uses of microproarammina are
instruction set implementation, emulation, and speed-sensi-
tive operating systems apvlications. These uses are not a
direct utilization of microorogramming to solve a specific
problem. 1In these cases, micronrogramming is a tool used bv
the hardware and the systems software to accomplish qgeneral
oroblem solution. Each reference to the microcode will in-
volve the layers of decomposition associated with any high
level programminag lanquage. The time penalty may be intoler-

rahle. While the work accomplished with STRUM and VYALLL by

37

R ’..'.- '-~.'. -"-‘ nd .~. C- '_.~ ‘v-'.¢r‘.- T oat e PO
< SRR QTN R SNy

« e el . - Sia D A SRS S S N A i "
TR AP SR I AP S SRR N SR SR S P AT SR St ot g

. . R AN e
.. BRSNS S L D Y
N . . < 2T T .

PR I S YR Y
LIPS 5. Py




T T T

Patterson is a sound approach to high-level application-
specific problem solution, the tradeoff cannot be afforded.
The user/writer of an application in a high-level
microprogramming language must forego speed advantages at
execution in order to make problem definition and solution
easier to write and more understandable to read. When
microprogramming is seen in the context of a tool used by
the system, the speed requirement is paramount.

A last criticism addresses the knowledge required by the
user of a high-level microprogramming language. This task
requires a working knowledge of both language and compiler
design, Backus-Naur Form for describing the grammar of the
language, and an intimate familiarity with the hardware
structures and their associated control signals. If a
language like STRUM were available, the user of the system
would still have to be familiar with the hardware in order
to tailor STRUM to her specific application. STRUM is a
machine-dependent high-level micro-programming language.

The approach of using a high-level microprogramming
language to define and solve a target problem may not bhe
suitable when considering the tradeoffs involved. Meta-
assemblers are also undesirable because of the low level of
detail at which the microprogrammer must work. A middle-
ground solution is needel which allows the production of

speed-efficient microcode but removes the drudgery from the

38

T TR




T T T T EITIIAIRRRTN———58’ T R T —

task of microprogramming. This thesis presents an automated
system which allows the microprogrammer to work on each
microinstruction at an abstract level and provides the
mechanism to produce microroutines.

The implementation described in this thesis assumes that
the microprogrammer has already created the algorithm to
solve the target problem and expressed it in some pseudo-
code. Each step in the pseudo-code algorithm is a
summarization of an individual microinstruction. The
microprogrammer is then ready to access the proposed system
and prepare the algorithm as microcode in its final hex
format. The system will present increasingly detailed menus
beginning at the level of a series of microroutines and
progressing to the actual fields within a specific micro-
instruction. The end product of the system will be user-
named microroutines of varying length constructed from
microinstructions in the binary or hex lowest-level format
regquired by the target architecture. Although the
abstraction capability for the entire problem in a high-
level language will not be realized with this system, the
microprogrammer can still work at a high level with a
microroutine; and she will realize advantages over the meta-
assembler method. First, the microprogrammer is released
from the drudgery of memorization; the meaning, order, and
spelling of mnemonics are eliminated. Second, typographical

errors will be reduced since fewer keystrokes are required.

39

T

et e e T e e . ot T e L. B S e T e e T e e e A, G LR PO B
Calot a’a TG PR SAETRAC TP UL L. S . SO ST, LW AR AL, A S B IE W SO A S N S Sl . U OV R O P N I A o




SI0

QIO

I.1

I; Iy

C "OVR

MUX

MICRO
STATUS
REGISTER

D Cp

D

9|

t|
N

9]

) )
‘g

INST
DBECODE

Wil

OEN

e Ig £
L} ,L]l [

INST S10
DECODE
SHIFT

QIO

F

................

MUK

L]

] TEST LOGIC

POLARITY

igure 10

[Ref .

13: p.

8-2]

Block Diagram AM2904

53

.....

......... .
St ettt
PR YRR WS W ey

FRIRY BN SVLIRIC LV
P s“‘

s
L

LR

doao o b 4

3

RN

5

et o
[PPSR

. " '. "
T A
a s b s 2 LA

-

o

II’

FOPIE AN




v
.............

. I A SRS
_‘.
]
rw.

M pIeOg UOTIENTBAZ UO £0Z6ZWY A

. (8-, ‘€1 -"33y] 6 @anbra b

3 ]

. e

] S+ WV .M

1 A

= | a A a4 A il X i A u )

Lf{ss1 2z | ss1 zp ss1 7l ) =g+ ss1 5 gz O

e Jee _ . 0 ....\.

- S (VR G+ w e st u o u b4u ATIVOEN o

Lors ¢ mon Mon onm Mon ’ onm Mon Mon MoH 120 mmwmw .

o10e——— Y10 ‘o010 o10  ‘o10 | %o10  toro o10 ‘oIt Tomo -

fa 20 € w k

AWNHV DN h“nmzm mubﬁP -

SS1 SsW 0

o




~~~~~~ F A AT Sl A e i ran 4 AR DUT vl 2h0a S Shbvis A desas Sehs Sene Sben S Mvetine Svan ran Sefe

-3
Ay-3 DATA T 0
A B —
ADDR ., ADDR - TE
co
¢ B T I
DATA OUT DATA OUT o
P raTcH IATCH k— CP
E

B
<t
5o

0-3 J 0-3
E, 1 J
S MX sMX | I
—

G/N <4L i
P/OVR N\ ALU / o)

SI0,
SI0
3 ALU 0 or
SHIFTER SHIFTER OO
QIO3
— — Q
OET Y P RFGI
B L
]
0-3)
T7ERO I
Figure 8 [Ref. 13: p. 2-16] "]
‘9

Block Diagram of AM2903

R
Y

51

.. e
Cl ST .
o ndond el d e

...........................

RID
REGISTER/ < STACK FULL
COMTER 15 POINTER
ZERO
DETECT 5 VORD x
' 12 BIT STACK
D
ouT
! m F
2 J\l L J\}
D R F ucC —}” ICROPROGRA!
o § MULTIPLEXER COULITER,
» : uPC
& &9
: ir
Gc' CI
@_Q%D . TMCREMENTER

PLA

3 |
|
L

q

Y N > DATA

MAP —_— QOMNTROL

Figure 7 [Ref. 13 p. 2-12]
Block Diagram AM2910

e
— L B e e e Mo e A e Bt B A B A A d

OPCODE Ra Rb
MAPPING __w_
PROM ADDR
AM29203
B
S I
D ~—A A Y —
MAP
AM2910
VECT
CcC I)
CCEN
AM2904
PL I v
CcT
WCS
1K x 64
]
| pipbl'ne]]
AM " aM ||| AM
2219 2919 2919 Mgﬁggg
L - 1A% R
PROM 1A
DECODER , Y
L
B A b4
BUS BUS BUS

Figure 6 [Ref. 12: 9-2]
Block Diagram of AM29203 Evaluation Board

49

....................
........................

T T R N T N N T T N T T T e Ly Yy T v T

logic unit (ALU), and the macro-level memory and 1I/0. The
block diagram of the evaluation board is found as Figure 6.

The main hardware component of the CCU is the AM2910
Sequencer. This microprogram controller is an address
sequencer for controlling the sequence of execution of
microinstructions stored in microprogram memory. Both
sequential access and conditional branching to any address
in microprogram memory is provided. [Ref. 13: p 5-~123] A
diagram of the AM2910 microprogram controller is shown as
Figure 7. The other hardware structures include a writable
control store, a mapping PROM which translates an op code
contained in the Instruction Register into an address in the
writable control store, and a pipeline register and

decoding PROM which increases the vertical microprogramming

.‘:- ottt e
R
. etete
ot e e e

t

depth. [Ref. 12: 3-10]

[
1

o
P AP

A Y

Tr2 arithmetic and logic unit used in the target

s

I.'.l.l .

machine is the AM292203 four-bit microprocessor slice. This

O}
)
“

ol

ALU chip can perform seven arithmetic and nine logical
functions on two four-bit operands. AM29203s can be
cascaded to provide for varying length operands. The
evaluation board cascades four AM29203 ALUs to allow the
handling of 16 bit operands. Sixteen special functions are

also supported which facilitate division, multiplication,

binary/BCD conversions, and mormalization. [Ref. 13: p 5-
342] Figure 8 is a block diagram of the AM29203, and Figure i?
9 is a diagram of how the four AM29203s are connected on the ﬁf

evaluation board. A

Nt A b A4 B AN R b e Junill dha AP il SN I R AL A oL - . . 3 - . - 3 v v A L Sl) . X - T

~

dependent or subordinate fields. The provosed system does
not meet this goal. In the history of programming lang-
uages, the original low level languages and even FORTRAN
were machine dependent. [Ref. 10: p 41] The proposed system
and its menus are predicated on a specific microprogrammable
target machine and a fixed microinstruction format. This
goal of retargetability is still important, and it must be
considered as a primary goal for the next system designed to

ease the task of microprogramming.

B. THE TARGET MICROPROGRAMMABLE MACHINE

1. The Am29203 Evaluation Board

In order to build a new technique for generating
microcode and to test the new method, a target
microprogrammable digital system is required. Available at
the Naval Postgraduate School is a prototype of the AM29203
Evaluation Board. This board was initially designed for
microprogramming experiments. It is built from various
bipoclar chips produced by Advanced Micro Devices in
Sunnyvale, Ca. The chips used belong to the AM2900 family.
The evaluation board is used only for explanation of the
microprogramming technique created by the proposed system.
Other microprogrammable systems are available and could also
be used to demonstrate how this online microprogram
generator functions.

The target microprogrammed system consists of three
sections: computer control unit (CCU), the arithmetic and

47

.............

T ————— s e e i i I R g A AUl ol Sl aieh D S0 Nt
PP R i e M Nl N

SEQUENCER
COMMAND
MENU

RETURN e

POST COMMAND
TO
MICROINSTRUC-

TION

BRANCH
BRANCH? ADDRESS

MENU

CONDITIONAL o
TEST o
MENUS

) 3

Figure 5
Next Microinstruction Address

..........

AT BN AN e el A i et vl i ele g N sl Svin_novie

A last source of error which the proposed system
attempts to prevent is subordinate fields. Dependent upon
the choices made for the value of a field within the
microinstruction, other fields within that same
microinstruction or another microinstruction will need to be
completed or contain a specific value. In a manual system,
the microprogrammer must remember what these fields are and
if any constraints are placed on the value that the field in
question may hold. The proposed system will present the
microprogrammer with the menus for the subordinate fields,
and only the legal choices will be displayed for selection.
If the fields affected are in another microinstruction, the
user will be warned what range of values must be in the
preceeding or succeeding microinstruction. It is the
microprogrammer's responsibility to reference the preceeding
word or remember the requirement for the succeeding micro-
instruction. Figure 5 shows the data path taken by the
system when the microprogrammer is selecting the next micro-
store address source.

The last goal of general purpose applicability is
difficult to implement when considering the various
microprogrammable architectures and microinstruction
formats. The top-~level capability is to allow a micropro-

grammer to select any target machine and design her own

microinstruction format in terms of length, field size,

position, and hardware component controlled, and mutually

)

PRI
et L
PRI B
P
L VRSP .

45

1 .
PRI L Cefa
'JJJ g gt s

B N T R S S T TR B N R T S P P P
IR PRF AP ST I NP IRL AN P AP PO PP PP RS AR G

.
L)
’

’

'

I

v
—d

« e
..........

P A e a o M A S e e e e ek e e e S e hre m arey

...... T Yl]

dependent fields and subordinate fields. A microinstruction
format is described as horizontal or vertical. 1In a hori-
zontal microinstruction format, each field will have only
one use or meaning. If the microinstruction format is
vertical, all or some of the fields will have more than one
use. For example, the same field mav be used to hold a
microstore branch address, a register selection value, or a
constant value to be loaded into a counter. The exact
meanina of this field will depend upon the exact value of
other fields in the microinstruction. As a further
extension of the vertical format example, suppbose that the
fields which interact are the ALU source field, the ahove
described branch address field, and the sequencer control
field. 1If the next microstore address is bhased on a
conditional branch, the branch address field would contain a
register selection if an ALU source operand is contained in
that selected register. A field conflict will exist with
shared fields. 1In the above hypothetical microinstruction,
the next microinstruction address cannot be determined hy a
conditional branch if one of the ALU source operands is
contained in a register. 1In a manual micronroaramming
system, the microprogrammer might not recognize and correct
such a conflict. With the proposed system, the ALU source
operand will be checked aadainst the next microstore address
to see if a conflict was present; if a discrevancy is

present, the microprogrammer will be warned.

44

—a —r—r—————— - ~—r ad L ary >
I DA O AR A S I R S\ SRSV S AN RULASIL SN S i i /A NS S A M S S At

- entering is in response to menus, and all but one response
are one character long.

a The most important criterion of a usable system is that
it replicate the process that is used to create microcode by

hand. 1In this particular case, the order in which menus are

b KPPV

presented should closely approximate the order in which the
microprogrammer completes fields in the microinstruction
when using a manual system. Basically, there is a one-to-
one correspondence between a field in the microinstruction
and the scope of each menu. The basis for replicating the
manual process is ease of use. Microprogrammers tend to
approach the fields of the microinstruction in the same
order. If the system presents the same fields in the same
order, the microprogrammer will find the system easy to
learn and use.

- ' The goal of security is motivated by a desire to

. eliminate errors made by microprogrammers. Security is not
_ considered to mean protection of one microprogrammer's code
2 from another microprogrammer. Security as defined in the
scope of this thesis refers to protecting the micropro-

- grammer from herself. WNo action made by the microprogrammer

gf which violates the format or the contents of the microin-

struction should go undetected. [Ref. 10: p 527] The reduc-
tion in keystrokes, memorization, and table lookups should
' eliminate some errors. The most important errors which need

to be handled by the system are the interaction of mutually

43

et
.
N

o .
.

.
P

‘.:’ - ’.“.).'u"'
o tatal Ay

T e, - T T e e - . . s -t et . et Lt e T e P - . .
L A ST AP SRR S AP R e e L. e e - St et - <. o . . LR I
e SRR . P VL Y - PR - - et s R < ST e P S S,
o - ., . .- .« EURETURNRY “ - LY N S (SRR

is the capability to have all the work done during the
terminal session saved to a disk file or to build the
system's data structure from a disk file at the start of a
terminal session. A complete session will walk a
microprogrammer through all the levels of abstraction from
many micro-routines to a single field in a specific
microinstruction. Once the microprogrammer makes a choice,
the system should know the requisite order in which to
present the menus. The mechanism is also needed which
allows the microprogrammer to navigate the various levels,
save or destroy all completed work, and terminate the
session. A useful system provides all the actions that a
micropro-grammer would reqire once no algorithm is complete.
The usability of the system refers to the man-machine
interface provided by the system. This man-machine inter-
face should allow an easy creation of microcode. First, the
microprogrammer needs to be relieved of the requirements to
memorize mnemonics and to refer to various references for
required information about the microinstruction or the
architecture. The menus summarize all tables and present
comprehensive choices to the user. All that a micropro-
grammer should require to create microcode using this system
is the detailed algorithm and the file name of the system.
Secondly, the entry requirement needs to be reduced. With
this system, the microprogrammer r Snger enters mnemonics

or the actual binary or hex values for the fields. All

42

ST T

III. PROPOSED MICROPROGRAMMING SYSTEM

A. GOALS OF THE SYSTEM

The proposed microprogramming system design was driven
by the four goals of usefulness, usability, security, and
general purpose application. The system would be considered
useful if a microprogrammer would perfer to use it as
opposed to using other microprogramming methods currently
available. Another criterion for usefulness is the correct-
ness of the microcode. If the microroutines created by a
microprogrammer using the proposed system correctly and
efficiently solved the target problem/application, then the
design would be considered useful.

A comprehensive system is a last component of useful-
ness. A system must anticipate all the actions that a
microprogrammer would need to make in order to kuild micro-
routines. These actions, at the level of the series of
microroutines, are the ability to scan the names of all
existing microroutines and print the microroutines. The
microprogrammer is given the ability to name/create, find,
list, add, and delete a specified microroutine. An existing
microinstruction can be located based upon a key and then
modified or deleted. New microinstructions can be inserted
into an existing microroutine or added to the bottom of the

Microroutine. The last action required by a microprogrammer

41

« teta .t
R dea A 4

.t
Do B

AP SR i i S i Sl i Ses S Sa s Jhas Shre (i A LU DA M - LI St e NG MOV s Jul i oydh g Sien sk Seue s oy

A e T Nt

Beaesden Sea A

DL
P W

PO N At bt At M SO el i St el e arel a4 S il - o M~ T AN o AR i i e et S e Sur S S i St e St Sag S o M-t~
L s e . AR, AT A N A A e e -

The menu responses are only one character. Third, table
lookups which are required for selecting the value of
mnemonics or determining the exact meanina of a mnemonic are
also eliminated because the tables are summarized and
reproduced in the menus. Further error control is provided
by automatically processing mutually-dependent fields. The
microorogrammer does not have to remember the mutuallv-
dependent fields or those fields whose meanina and use are
determined hy the choice made in another field. For
example, if the function chosen for the ALU of a hypothe-
tical machine restricts the possible ALU source operands,
the microprogrammer will only be allowed to choose
permissible sources.

The method proposed in this thesis for writing microcode
is an improvement over methods currently in use. The method
attempts to preserve the speed efficiency of microcode by
producing code in its lowest level of abstraction while the
microprogrammer is spared the traditional tedium of workinag
at such a low level. The next chapter provides a detailed

explanation of the proposed system.

40

Y TS T T

T e —

The second maior hardware component found in the ALU

section is the AM2904 Status and Shift Control Unit. This

integrated circuit performs the miscellaneous functions
which are required to support an ALU. The AM2904 is three . N
nearly indevendent blocks of logic which provide shift link-
ages, status registers and condition code checking, and the
carry-in for the ALU. Fiqure 10 is a block diagram for the

AM2904. [Ref. 13: p 5-72]

2. AM29203 Evaluation Board Microinstruction Format

The microinstruction consists of 48 bits which are
organized into three major fields. A general microinstruc-
tion format is provided as figure 11. These three main
groupinas of fields correspond to the three main hardware N

components of the evaluation board.

OPERAND ALU CONDITION| SHIFT MICROIN- | NEXT

REGISTER | OPERATIONS | CODES AND STRUCTION ADDRESS

ADDRESS : CARRY BRANCH SELECT

AM 29203 | AM 29203 | AM 2904 AM 2904 AM 2910 AM 2910
Figure 11 [Ref. 12: p 3-5]

General Microinstruction Format

The first portion of the microinstruction controls
the hardware associated with the AM29203 ALU. This part of
the microinstruction is shown in detail in fiqure 12. The
first three bits are the reagister address select fields

which specifv either the piveline register in the CCU or the

54

BRI DA ARCNA R e e i N S A A A S o Argh A U S A A A WA aaaa A orfe - WP e s e B o RS E E

Macro Instruction Register as the sources of ALU operands o
the destination of an ALU operation. The next bit is the
instruction enable which controls whether the result of an
ALU operation is written to any of the ALU RAM registers if
they are the selected destination. The next bit is also an

enable which determines if the ALU output appears on the Y

REGISTER|I | O DESTINATION BASIC
SELECT g 5 SOURCE | gszmeat FUNCTION
FUNCTION
Figure 12

AN29293 ALU Portion of the Microinstruction

bus. The Y bus is the major data bus in the evaluation
board. The last three fields are the ALU Source Operand

selection, ALU destination selection, and ALU function

selection.
(]
CARRY C |IC |H |ICc |[sHIFT/
IN I15-14 E |[E {I |[M [COMMAND
M M [F [D |FIELD T
T N

Figure 13 S
AM2904 Shift/Status Control Portion of Microinstruction 3

Since the AM2904 chip performs the different func- i
tions of carry-in, status-checking, and the setting-up for 3

conditional tests, many of the bits within the microinstruction .

55

- . - .
....... OO
KON

e .
I
t. s e e)
ot

-'.~‘.-‘
TNV N
L'WY

- T e et Pl el o m el . v 3 . Lty LR A A A i . S SR A A NI)

control different hardware structures. The first two bits
of the AM2904 portion of the microinstruction control the
carry-in when it is 1, O, or the output of the ALU. The
next six bits are the Instruction Lines for the AM2904 and
are numbered I5-I0. These are the six bits that most
strongly bring to light the problem of mutually-dependent
fields. These bits control what is done to the micro and
the macro status registers, the state of the carry-in if the
carry-in's source is a status register or an immediate
input, and the register and the condition reflected in a
conditional test. A detailed discussion of these six bits
and their associated problem of mutually-dependent fields is
contained in the next chapter. The next two bits are the
enable bits for the Macro Status Register and the micro
status register. The last six bits are primarily concerned
with the shift linkages required by the ALU special
functions or ALU destination. These bits are also used by
the board to enable communications off the board, to enable
memory reads and writes, and to load the Instruction
Register. The first bit in this section is the shift bit
which enables or disables the shift linkages, the second bit
is the command bit, and the last four bits help to uniquely
determine the actual shift pattern or the miscellaneous and
memory function to be performed by the system. The complete
layout of the center sixteen bits of the microinstruction is

provided as figure 13.

-y,

-y . oo,

T I T IRrrr———

..............

The last set of fields belong to the AM2910
sequencer whose format is illustrated in figure 14. The
first two bits, bits 15 and 14, provide for a breakpoint in
execution and a spare bit. Bits 13-4 are the multiple-
purpose bits that were described in an earlier example.

This Branch Address Field contains a branch address, the RAM
register ipentifiers for an ALU operation, or a constant
which can be loaded into a counter or register. The last
four bits are the AM2910 sequencer command field which
implement sequential or conditional flow of control within a

microroutine.

B g BRANCH ADDRESS FIELD 2910
K . SEQUENCER
p 2| 1|) {——CONSTART COMMAND
T E Ra Rb
Figure 14

AM2910 Sequencer Portion of the Microinstruction

C. ENVIRONMENT OF THE SYSTEM

The proposed microprogramming system was coded in
Berkely Pascal, and it is run on a VAX 11/780 computer under
the control of the UNIX operating system. It is an inter-
active program which presents the microprogrammer with a
series of menus. There are various paths through the system
depending upon the choices made by the microprogrammer. The
microprogrammer can proceed in both directions through the

hierarchy of the system.

_"'. >

bl SN AU I A BV S G g, AL S ML Gt G gl e e

SO . Lt et e RS P T S A i A R A e A I PR I I N RO
PRl P APV I, AL N L WP PRI PRI 2PN P S MR Wl Wil s PAPY N WA 3P A WL W VRN W W W WA & PP SR W P LAY v VR WPV

PLYS SR/ o BuiCE ACSE Sl A Sean Jves B B WA IR PR A S A B S AWM AT S AV AT SN e SN et il aA M NC PR St Satt ints Rt St A

The data structure used by the program is a linked list
which contains two types of records. This structure allows
the user flexibility when performing operations on micro-
routines and microinstructions. With a linked data
structure, the insertion, deletion, and location of various
records is facilitated. Figure 15 is a logical representa-
tion of the linked list. The top linked list provides
microroutine information; each link contains the name of a
microroutine which serves as a key for locating a specified
microroutine, a pointer to the next microroutine, and a
pointer to the first microinstruction in that microroutine.
The remaining links within the structure contain data for
one microinstruction. This information consists of a record
holding a sequential count of the microinstructions within
one microroutine, the hex value of the microinstruction
organized into three fields corresponding to the major hard-
ware components on the AM29203 Evaluation Board, a set con-
taining each class of all mutually-dependent fields, and the
choice made by the microprogrammer for each class. The use
of the set and the choices will be further explained in
later sections. Figure 16 graphically represents the
structure of a microinstruction node; Figure 17 is included
to show the actual Pascal code used to create both the
microroutine and the microinstruction nodes in the list.

The count is used to consecutively number the

microinstructions within a microroutine, and it is used as a

58

Ty K B P T U S P P ST S A et et At e S e I T T S T TR
DT S I IS IR L L AL S AT P R T I R N A T T T T T S N N AR IS AP AL P Y
Y s, Cate T el . T N

A SR S L EL g e il e e Tt e

AN

T

ROUTINE name

ROUTINE name

ROQUTINE name

WORD info

l

WORD info

WORD info

|

L

WORK info

nil

nil

nil

Figure 15

59

A

WORK info

nil

Logical Representation of Linked List

, 0

Sy ’A'“ R

st '
T T ettt R
I WU AT WA 1P I

. oe e .
Sl
P

¢

D
2P,

L P e T e e EARE SNt S S ST B S-S N A~ el N SR A AT A NI i e A T i e R S]

COUNT AM 29203 AM 2904 AM 2910

MICRO MACRO CARRY CTEST YOUT

RAM BRANCH SHIFT COMMAND PASS

MICRO choicel MACRO choice |CARRY choice| CTEST choice

CTEST2 choicegl YOUT choice SHIFT choice CoMMAND choice

Figure 16
Microinstruction information Node
key to locate or insert a microinstruction. The last item
is a pointer to the succeeding microinstruction. All links
in the data structure are dynamically provided by the Pascal
environment.

All of the menus have the same general format. All of
the legitimate choices are shown with an alphanumeric
character to indicate the response desired from the micro-
programmer, the current mnemonic for the field, and an
English languge summary of the mnemonic. After the choices
are enumerated, a HELP option is provide which will direct
the microprogrammer to various references. The last choice
is a RETURN which will save the current status of the micro-
instruction or microroutine and return the microprogrammer
to the next higher level of menus in the hierarchy. The
microinstruction and microroutine menus also provide the

mechanism to destroy the current microinstruction or

60

ettt el et ettt LT T T
.~ e 0 et

=

LR
A
g v e e

o

v
A'l . .
JPOT R MY W N

« v e
PR
L)

RIS AL E T SN A et el g0 Lt AN o R T T T IS T T T T YT

RS R R R e

type fieldtype = packed array {(1..4) of char;
CONFLICTtype = (micro,macro,carry,ctest,yout,
RAM,branch,shift,command,pass);
nametype = packed array [1..R8) of char;

ROUTINEptr = ROUTINErecode;
WORDptr = WORKrecord

WORDinfotype = record
count: integer:
AM29203,AM2904,AM2910: fieldtype;
CONFLICTclass: set of CONFLICTtyve:
MICROchoice,MACROchoice,CARRYchoice,CTESTchoice,
CTEST2choice,YCJTchoice,SHIFTchoice, COMMANDchoice::

char
end;

(* The Microroutine Node *)
ROUTINEtyre = record
ROUTINEname: nametype;
ROUTINEnext: ROUTINEptr:
ROUTINEfirst: WORDptr
end;

(* The Microinstruction Node *)
WORDtype = record
WORDinfo: WORDinfotype;
WORDnext: WORDptr
end:

var ROUTINElist: ROUTINEptr (* first node in list *)
ROUTINEtop: ROUTINEptr (* current microroutine *)

Fiqure 17
Declaration of Master Data Structure

_1
61 =9

. o~
At et
. e Wt T et Wt et e . LI " JEE PR P PN P I SPOL PR SR TN P [IR YR TN IR
S e et T A T R T S L S B S e U AP R R SR B e T T e T T e, T T
LS SR T AP S PO T, Sy R S RTINS S T S g Y il A A I A Y T IR S VR AT WAL VAL WA DRI I & W T DA A A

» 'l -'- T e - o - - '.- MY '.o - P) . "
o~ a e, P BERAEA e EASAR
I WAL DR WA IS T W W TR IUNE AL AT TP T S, S Y

microroutine and adjust the pointers within the linked list.

An example of a typical menu is found as Figure 18.

MODIFY AN EXISTING MICROROUTINE MENU

What do you want to do?

Type a C to CHANGE the name of the Microroutine
to MODIFY a Microinstruction
to ADD a Microinstruction
to INSERT a Microinstruction
to DELETE a Microinstruction
to LIST a Microinstruction
for HELP with this menu
to RETURN and SAVE the current Microroutine
to RETURN and ABANDON the current Microroutine

pOTOoOHPpX

Figure 18
Typical System Menu

D. STRUCTURE OF THE PROGRAM

The primary organization of the program is based upon
the functions that the microprogrammer will perform during a
terminal session. These functions are a natural hierarchy,
and both the requests for menus and the structure of the
PASCAL code represent this hierarchy. Figure 19 is a
functional chart showing the actions that a microprogrammer
would make when building a microroutine once each routine
has been expressed in a pseudo-code algorithm. Figure 20
illustrates the organization of the program and how it

parallels the previous functional chart.

62

T ST S STV S P

[]
i

ek

¢ 1 .
I TN
NI A)

LIPS T T B S R

"\' P T R
et e,

A ,

i
Ll

. .
PR
B
, et
AN S
il e ol

4

o]

AR
)

e
ando b

1, .Y- ‘1 ‘l " .' 'r’"
) -' -. -' c'

P
v

a

JEN - R - T . N R N N . S . . Lt P
el e T et LT oA e e T e ATt e el e e e e T
C s L T e e T S T e e T

i

T T

T

LNOX

LSHL
TYNOILIANOD

JIeyd uoriouny
61 2Inb1g

NI AdyvO

SNIVLS
OdOVN

SNLVLS
OdOIN

LOATIS
ANYHWWOD

ssayaqv
HONVYH

TYNOILIANOD

LSdL

Rk s

YIATYEA
0T6Z-WV

LOITIS
NOILVYNILSHQ

LOITIS
dOUNnos

YIATIEA
v06C-WY

LOJTds
NOILONNJ

]

YHATYA
£0C6C-WY

YdATEA
NOILONNA

63

SN

..
.

FRC I
o

AR
P APE VRE SREN

BNy

ala’a

A et .
<t e

v et

A ol

Y LA -
{.__. et
| Wy

Do

)

LI R P

&
'f..

-

AN AN o

T

s —x

JIey) uoriezruebig weaboag

0¢ =2anbtg

......

qLvadn
/NOILVAID
LONYLSNIOYDIN
ANILOOYOUDIN

SONIRW

d1Lvadn
LSIT
aIAINIT

GONVNILNIVH
LSTT
dIANIT

. .
......

64

SNOISYIANOD
WILSAS
JIIWAN

NOILVZINVDYO
WIO0dd
TVYOS¥d

L RN v, it adsl ...Aﬂ‘.-.q..ltn.
D B B AU

.

T
;

The additions to the program hierarchy chart are
required for manipulating the linked list and providing for
conversions between hex, decimal, octal, and binary numbers.
Manipulations of the linked list occur at three levels:
system entry and exit, microroutine manipulation, and
microinstruction actions. Upon system entry, the linked
list is built based upon the contents of a disk file. This
file contains all microroutines and their associated
microinstructions created/modified and saved from previous
terminal sessions. At system exit, all previous routines
which have not been explicitly deleted and those routines
which were added/modified during the session will be saved
back to the same disk file. The microprogrammer also has
the option to abandon all previous and current microrou-
tines. Since the dynamic allocation of links by the system
is the method used to acquire the nodes for the linked list,
all of these nodes are deallocated at system exit. A
microprogrammer is given the ability to scan the names of
all microroutines and to receive a hardcopy report of all
the microinstructions within their respective routines. The
microroutine manipulation procedures which can be performed
on existing microroutines include location, deletion,
modification, and on-line listing of all microinstructions.
A new microroutine can also be created and added to the end

of the microroutine linked list.

65

D T Tl R e S P T e TR AL L R A

LIRS S R D N A R - - » L e e e e e e e e e e e e e
I, PN I S I S s Ja S P PR S, RPN S SRP R w VRl SEPPRrWEY R Y

o Ly
B B Mo Roa B

The last level of linked list global procedures are
those which provide for microinstructions. It is possible
to locate, modify, and delete a microinstruction based upon
the contents of the count field. This count field can be
obtained by the microprogrammer by listing in the terminal
the microroutine currently pointed to by the pointer ROUTINE
top. A microinstruction can be inserted between two
existing microinstructions based upon the count field of the
preceeding microinstruction, and a new microinstruction can
be added to the end of a microinstruction linked list. Each
of the microinstruction procedures contains the mechanism to
a;:pcate consecutive integers in the count fields for an
entire microroutine.

Conversion routines are required because the final
format of the microinstruction in each of the nodes of the
microinstruction linked list is three fields each containing
four hex numbers. While several choices from the menus are
hex numbers which can be easily placed into the correct hex
position within the micrcinstruction, some of the fields
affected may be one to three bits in length. These fields

will be worked on at the binary or octal level. A binary-

to-hex conversion is needed to create the final format which o
.

is stored into the nodes. ey
w

Auxiliary warning menus are also provided. These menus ~

warn the microprogrammer about the requirements for succeed-

ing or preceeding microinstruction values which depend upon

66

AR B e T J e e ol e e B v Ao g A e ey e A A s s o
. . . oo - N B A M N - N . oo . . - ~ AR R " - - . . R

a choice made in the current microinstruction. For example,
if the microprogrammer chooses the instruction register for
the operand R and operand S sources to the ALU, then she
will be warned about the requirement to load the instruction
register in a preceeding microinstruction. If a
microinstruction field conflict exists, a warning will also
be posted. Suppose that the microprogrammer created a
microinstruction where both the ALU Source Field and the
Sequencer command required a value to be placed into the
Branch Address Field. She would receive a warning that a

field conflict existed.

IV. USING THE PROPOSED MICROPROGRAMMING SYSTEM

A. DESIGN PROBLEM OF THE AM2904 SHIFT/STATUS CONTROL CHIP
The problem of mutually-dependent fields is most crucial
with the I5-Ip bits for the AM2904 Shift/Status Control
chip. These six bits determine the action for the micro and
the Macro status registers, the carry-in to the AM29203 ALU,
the register to be tested and the condition to be tested
when a conditional test is performed to determine the Branch
Address for the AM2910 Sequencer, and the Y output from the
AM2904. It is not enough that there are five classes of
actions which are controlled by these six bits, but a single

choice within a particular case might bhe represented by one

67

e T s et e T et At e P I o S I R S T I SR
Al el ERT VI Vol Wl Wil Tiedl S ARSI ULAL 0 AP WSV PP AP G LIPS 1L P DL N W W T QR ST WL W)L % S W e

PP TP eR]

a0l

~N
BUILD
MICROROUTINE
MENU
NAME NEW A
MICROROUTINE 2,
1 AL
NEW WORD BUILD/
— NODE MODIFY
MICROWORD
N
—A
FIND TOP LIST T
5 OF LIST MICROROUTINE ;
TO SCREEN
A
—]
DELETE DELETE
ALL MICROROUTINE
MICROINSTRUC- NODE
TIONS
—t
A EXIT)
- 1
» y]
Figure 28 =
Logic for Build New Microroutine =]
s
81 Lj
73
.

A N Y W W N W T Wy oo e TR . -

The logic for this menu and a flow of control for the entire
system is shown in Figure 26.

Only two choices from the Master Menu generate other

FEEIE
I P
‘l‘ll.

series of menus. These choices are build Build New Micro-

o?

f e e
S,
“,',';l

» .

Build a New Microroutine Menu

-

What do you want to do?

to NAME a Microroutine

to BUILD the new Microinstruction

to LIST the Microroutine

for HELP with this Microroutine

to RETURN and SAVE the current Microroutine

to RETURN and ABANDON the current Microroutine

Type a

POEICE 2

Figure 27
Build New Microroutine

routine and Modify Existing Microroutine. The menu for
build a new microroutine is found as Figure 27. Upon entry
to the procedure which processes this menu and calls
subordinate procedures associated with specific choices, a
new microroutine node is created and added to the end of the
microroutine linked list. The microprogrammer can name the
microroutine, build a microinstruction, list the microrou-
tine, receive help, and return to the Master Menu either by
saving or destroying the microroutine. The user is
prohibited from adding a microinstruction or listing the
microroutine until it has been named. If the new micro-
routine is to be destroyed prior to returning to the Master

Menu, the microroutine and its associated microinstructions

ol e
S

80

PR
p 1

NP
Lo aal a0

A Jnan auvgs Suae o T L —————

MASTER
MENU
v BUILD DELETE
BUILD MICRO- g SPECIFIED
ROUTINE q MICRO-
{ ROUTINE
N
v MODIFY PRINT ALL
MODIFY MICRO- < MICROROUTINE@
ROUTINE
v
Y NAiggNOF SAVE ALL
SCAN MICROROUTINES .—{, H MICROROUTINES |
¥
N
LIST NBANDON ALL
Y. SPECIFIC MICROROUTINES
LIST MICRO- =
ROUTINE
N
1
B (;_. -
<EE:L STOP _:E
< 1
- -',
Figure 26 —3
Overview of System o
79 "'_]
N
79
]
RS
...... e e e L e e e e T e e e e e e e e e e
* a -t o .‘ VAR WAL T P ARSI AN PR, R A A A o T O P iy S S, m

B. UPPER LEVEL MENUS
There are four upper level menus which the micropro-

gramer must use before she can begin work on the separate

AM2900 Family Microprogramming System
Master Menu

What do you wish to do?

to BUILD a new Microroutine

to MODIFY an existing Microroutine

to DELETE an existing Microroutine

to SCAN the names of existing Microroutines

to LIST a specific Microroutine

to PRINT a hardcopy listing of all Microroutines
to HELP with this menu

to SAVE all work and RETURN to system level

to ABANDON all microroutines and RETURN

Type a

PROTIOUCNVNOZW

Figure 25
Master Menu

fields in a microinstruction. The first menu is shown as
Figure 25. The menu is the Master Menu to the system, and
it presents tc the user the ability to perform all desired
microprogramming functions. As functions are completed,
con-trol will return to this menu until the user indicates
that she is finished. The choices available are build a
micro-routine, modify an existing microroutine, scan the
list of microroutine names, list a specific microroutine,

delete a microroutine, and print a hardcopy report of all

microrou-tines. A help option is provided. The last two \3
choices provide for system exit; either all microroutines iﬁ
are saved to a disk file or all microroutines are destroyed. f*

L

Y

78 o

.
A

e

ek

-, Ce Sy,
. . R
- e ol ol

T ey, AR Ca A S st et O Rae SN M e Svdi . atie sl ARe R e g S A he ARt &S 20 e

found between the first and second lists, links in the third
list are compared with the current choice in the second
list. If a match is found between these two lists;,; then the
bit pattern from the third list must be compared to the
current node in the first linked list.

This process will continue with all remaining lists
until a match is found or all the choices among the various
classes have been exhausted. The indication of an unresol-
vable conflict is when the first vertical list no longer
contains nodes to be used as the base for the search and a
match has not been found. The algorithm used to walk the
third data structure is included in flowchart form as Figure
24. This example only processes three lists. More lists
could be processed by a further nesting of the code. Since
the horizontal ordering of the vertical lists is random, the
lists cannot be pointed to by MICROptr, MACROptr. etc..

They are referred to in the order in which they appear as
FIRST, SECOND, etc., and a permanent pointer to the top of
each list is used and named topFIRST, topSECOND, etc.. The
final action of the procedure WALKCHOICES is a posting to
the microinstruction of the correct value of bits I5-1If, or
the presentation of a warning menu to the microprogrammer.
This warning menu will show the microprogrammer the choice

that she has made in each class.

77

AT SN e e - ot . -.-"--4~-'~ - . - - - - - - T e et - .‘u - . - - . ~ - " M - . - MY - - ~
R R R e T A o T 2 R L U S S SR o~ PN e ey e e
L P T A L A S SR . - I N . N

-

'. e T - L T R A I T, S,
LRI ~ o » R) - " . . -

PRSP Y S SR R Wil R P L W oA S SR Sy

= NN B S AL A
o - ‘. .. PP) l: A l:n ﬂ- o ; .-A.--.; .“.

Pad g g e g g a0 N R SAIE o WU i A At A At e e e

..

3=N1L

3=TOP
2=NEXT

MATCH=

3=NEXT TRUE

Figure 24 Con't

76 - S

CONFLICT -
MENU Y [
N | 2=NIL
Com
2=TOP N
1=NEXT
@
2=NEXT
®

Figure 24 -
Logic to Walk AM2904 Linked List -

75

.........................

v . .’ ‘e - - «_ o - o '- K
<0 .'..L'L u-..-.A.MA-.L.A:_

built to hold all the possible bit patterns for that choice.
The number of links for a choice may range from one to
seven., Each class of action chosen by the microprogrammer
for the current microinstruction will have its own vertical
linked list. If the microprogrammer has decided to check
the status of both the Macro and the micro status registers
and perform a conditional test, there will be three vertical
linked lists. The first two will contain seven nodes, and
the last list will contain only one node. Each time that a
choice is made, a vertical list is built and the entire
structure is searched to check for conflicts and determine
the value to be placed into bits I5-If. If a class of
action is chosen a second time for the current microinstruc-
tion, the old vertical linked list must first be removed and
replaced by the list representing the most recent choice in
that class.

The search for a match involves comparing nodes in each
vertical list until a node in each list is compatible with a
node in every other list. At the start of a search, the
first node of the first vertical list is compared against
each node in order in the second list until a match is
found. If a match is not found and there are more nodes in
the first list, the process is repeated with the second node
of the first list and all nodes in order of the second list.
This iterative process continues until a match is found or

no nodes remain in the first vertical list. Once a match is

74 . "

................

MICRO tap CARRY tap CTEST tap

00010X

OXOXXX

_

0X1010

———_———et nil

X10XXX

0OXX1XX

nil

nil

1XO0XXX

nil

01101X

nil

1X101X

nil

0111xXX

nil

1X11xX

nil

nil

OXXX1X

nil

nil

Figure 23

nil

Logical Representation of AM2904 Linked List

73

‘-

<

[}
PR
NN

. o
Aaa ot

i

AL RPATA LT
4 oa .“'_AJ""' o

ahaai

.
AN
-“

R

-

4‘\‘

S

\-1

st

< 8 - L
- - . - -“
R PN IR

DRSNS R A I it N g it Ml Vg e Mt g St Mafotefl tal Sl At Suf WaAl G ARl And Salh adl I Tt it A it de A SNt A A SRSV AC T S AT T A BT AL S T e
P . L L Rt Mt T e i e e A A A N A RN NI AR N R AN IS

The second structure used is a set consisting of all the
five classes of action. The names of the classes are the
same as the index of the above described array. Only one T
choice per class is allowed. The set is used to enforce . T
this rule. Each time the microprogrammer makes a choice
which affects the value of bits I5-Iff, the class of that i
choice is determined by the program and that class's status o
in the set is checked. If the class is in the set, the
microprogrammer has already made a choice in that class for
the current microinstruction. The 0l1d choice will be
removed from the third data structure and replaced by the
new decision. If the class is not in the set, then this is
the first time that a choice in that class has been made:
the set will reflect the current status of the class, and
the new choice will be added to the third data structure.
If the hypothetical microprogrammer has chosen to activate) Ei
the Macro status register and perform a carry-in, macro and
carry will be in the set; micro, ctest, and yout will not be
in the set. <

The last and most important data structure is a linked
list which is walked either to find a match or to determine
if an unresolvable conflict exists. The format for each of
the nodes and the hypothetical example completed as a linked
list are shown in figure 23. When the microprogrammer makes

a choice involving bits I5-If, a vertical linked list is -

weee Tt T e LRt
. " .l .

IS DT SN I L AN AR AP S

A A S T R A g S SN R i iy Ehalid ~ B m s LNl Jhatiionath it ot TR rapee—————~yr

g . ~ R A g . o PN A g g AT

a sevenonsition array with each position holding the packed
array of a possible bit pattern. Three data structures are
used to automate the assignment of a value to bits I5-If.
These structures are an array, a set, and a linked list.

The Pascal code used to allocate the data structures is
included as figure 21; it is included to assist in
understanding the solution of mutually-dependent fields in

the AM2904 portion of the microinstruction. The first

MICRC | load msr direct

MACRC] no choice made

CARRY micro carry in

CTEST micro carry

YouT no choice made

Figure 22
The Array Data Structure

structure is a one-dimensional array which is shown for a
hypothetical case in figure 22. It is indexed by the five
classes of action, and each of the five positions are
initialized to 'no choice made'. A description of the
action chosen by the microprogrammer for each class is
stored in this array. As an illustration of the example
array, the microprogrammer desires to load the microstatus
register direct. The position in the array indexed by micro

would contain the character string "load msr direct."

S
.

71

S,

N e R SR

AR R SR

o
. tw

LIPACIN
¥ ‘e L Y ‘. s 2 .l. 'l. L‘\. .l. w3 '.'. ‘A .' e I' ") 5- ..- .!

DA Al IR ACTR I A S it e - o MR St e A/ S S R W AT AN A RN SN NG i i S A AL B e St R rTeT AT EE

type STATUStype = packed array [l..6] of char; .}}
CHOICEclass = (micro .. yout); "

STATUSptr = STATUSrecord; L.
(* This record is the actual node in the linked list *)

STATUSrecord = record kﬁ
status: STATUStype:;

next: STATUSptr: -
right: STATUSHtr B
end;

CHOICEname = vacked array [l1..20] of char; e
hexranqe_.: (lll’l2l’l3l’l4l’l5|'|6I'l7l’l8I,l9!' -l
'A','B','C','E','F'): ‘

var MICROptr ,MACRODtr ,CARRYpPtr ,CTESTptr,YOUTptr: STATUSotr:
MIRCOtop,MACROtop,CARRYtop,CTESTptr,YOUTptr: STATUSotr;

CHOICES: array [CHOICEclass] of CHOICEname; "
CHOICEset: set of CHOICEclass;: =

(* The following arrays contain the actual bit patterns -
for the choice that they reoresent. These values e
become the nodes in each of the linked lists. *)) e

resetSIGN, setSIGN, resetOVERFLOW, setOVERFLOW,

loadmsr, setmsr, SWAPmsr, resetmsr, l1o0adOVERFLOW,
LOADMSRY, setMSR, SWAPMSR, resetMSR, invertMSR, S
carrymicroinvert, carryMACROinvert, CARRYO, CARRY1, o
CarryCx,SIGNexor, SIGNexnor: STATUStyve:; gy

loadCARRYmsr, loadcarrymsr: array [(l..2] of STATUStyvpe;
loadDIRECTmsr, loadDIRECTMSR: arrav [l..71 of STATIStvpe; s
microcarry, MACROcarry: array [1..3] of STATUStvve; e
MICROtest, MACROtest, STATUStest:
array [hexrange] of STATUSTYPE:

Figure 21
Declaration of AM2904 Data Structure

70

....................... . - " e e e
. IR B A PR Y Lt ey, R A e TR AP S L N IR AL P L - - et et - -
..... TR R . . T S R . RN . ~

St T T e e T e e e LIS R . SRS ST T N e e N =N T e

CaCSRE Y A i et St APSE afes APl BIPIL Gvte AP SNt Aan SFUILAINIE AP snciL IR e Sred st Jeue ooy ARSI AR ST A Sl S R ik et e s el VL i S et cren S pen
Rt e . Bl AT AN AN R B A A TR A S AL A S L i P AL SN N

the conditional test and the Y output. This is a total of
nineteen bit patterns that must be remembered and which are
involved in trying to resolve the conflict of mutually-
dependent fields.

A microprogrammer should not be required to have to
remember all the patterns and resolve conflicts manually.
The chance for error is greatly increased for a manual
microprogramming system. It would be easy to forget to
include a pattern in the search, make a mistake in compari-
son, or to memorize a pattern incorrectly. The micropro-
grammer should only need to indicate the action desired in
each of the five classes, and an invisible system should
find a match or report an unresolvable conflict. The
proposed microprogramming system will provide this facility.
A data structure is used which stores all the possible bit
patterns for the choice made in each of the five classes of
action. This data structure is examined each time the

microprogrammer makes a choice involving these six bits;

either a match is found among the classes, or the micropro-

grammer is informed of an unresolvable conflict. -
In the program, all of possible values for bits I5-1Ip of 7
the AM2904 portion of the microinstruction are stored. For

example, the bit pattern to swap the Macro status register

with the micro status register, when chosen from the micro f:
status register menu, is stored in a packed array named ii
SWAPmsr. All seven values for a loadMSRdirect are stored in ié

SRC

69

0
ata’a

- . . e e w
PR v S
e e PR
. . * - .
a—ala

«
fa

T L S AT T L P SR TR A T . e e e e e e e e, N e e e
P T i e S e e R S L et e e e e e e e e e e e e e e e e
e e e e o et et o AR . & O WO A
IR IR S SN SNPG JO I PN)

B Atad Ad ad ol mts Arel et Lpan segn v e lhendn st il e d Ao Sed Sack Lol ou gad]
L e N e e e R I e

to seven different values. If the microprogrammer desires
to directly load the Macro status register, there are seven

possible values that she could use. The task of writing a

2 |
) ¥

microinstruction based upon a detailed algorithm becomes

quite difficult and confusing when these six bits are

- an e
Ve

tackled.

In the meta~assembler method of microprogramming, a
microprogrammer would have to remember the choices of these
six bits in any of the five classes of action needed. The

microprogrammer would also have to remember all the possible

values for a specific choice and resolve all the conflicts
by hand. As an example of the complexity of the task and .
the memorization required, suppose that the hypothetical -
microprogrammer desires to load the Macro Status Register ~
direct and the carry-in will originate from the micro status -
register. A loadMSRdirect has seven possible bit patterns
and the microcarry has three. Each bit in these patterns N

will be either a 'l', a '0', or an 'X'. The 'X' represents

a don't-care condition and will match a 'l' or a '0'. The
loadMSRdirect pattern of 'lX101X' conflicts with the
microcarry pattern of '0OXX1XX". However, the loadMSRdirect
pattern of '0OX11XX' does match, and there is not a conflict
among the bit patterns for the two classes of action chosen.

A worst case match search would involve seven choices for

LN)

both the Macro and the micro status registers, three choices

for the carry-in, and one choice each for both

68

LERAr - « o e P B L N P
e o DY T R e AR A A e N S e e S T e N I L B e I TS
- P I I PSP Ja S feendonedioen fon bl dion S Sre S0 0 dee B oo oot s S B des hadn dea b da da doa denes

will be correctly adjusted. The logic used to build a new
microroutine is illustrated in Figure 28.

The actions which can be taken in modifying an existing
microroutine are based upon the actions permissible in
building a microroutine. Once the microprogrammer has
provided the name of the microroutine to be modified, a
pointer named ROUTINEtop will point to the correct microrou-
tine link. The microprogrammer can change the name of a
routine, modify an existing microinstruction, list the
entire microroutine, and add a new microinstruction. This
last choice, add a microinstruction, causes a new micro-
instruction node to be added to the end of the current
vertical list pointed to by ROUTINEtop. Two additional
capabilities with this menu are insert and delete a
microinstruction. All of the choices are shown in Figure 29
which presents the Modify Microroutine Menu. An insert of a

microinstruction creates a new microinstruction ..».de, but

Modify an Existing Microroutine Menu

What do you want to do?

P S AP I

Type a C

PO IICoH>»X

YT e et
2o chreatincaadine ot

to
to
to
t.o
to
to

CHANGE the name of the Microroutine
MODIFY a Microinstruction

ADD a Microinstruction

INSERT a Microinstruction

DELETE a Microinstruction

LIST the current Microroutine

for HELP with this menu
to RETURN and SAVE the current Microroutine
to RETURN and ABANDON the current Microroutine

o R L R TP IR R et e e e e
L. WP, TPE TUPUL. WP WP S WP DL TUNE I WP TR I W DL T R W WO W M W a e Y

Figure 29
Modify Microroutine

82

LI IR TR SN T T)

o et D T U T SR LS P S S Y
P R T TS S N AP S T TR CalT T et e, et AL IR IR

At et . DR BRI RN
- - RSN . . “m

.-k'l~' hﬂ- ..‘~'. 0-‘ l"
VORI SR e

L AT
PRI A ¢ T

ol

nn...
wra]
[P Y

.
o,
% "

V)

—

this node is inserted before the microinstruction specified

by the microprogrammer. The count field is used as a key to

i

find the succeeding microinstruction. The count field is

.

(S Ve ¥

also used as a key to find the microinstruction to be

deleted. The system will match the count provided by the

L.'. AR AN
PPN NN

microprogrammer with the count field for either the

succeeding microinstruction for an insert or with the

correct microinstruction for a delete. For both the insert

. s
P SRTIY S

and the delete options, the pointers within the vertical

linked list must be adjusted and the count fields recomputed

to ensure a sequence. The flow of control for microroutine
modification is shown in Figure 30.

The last menu and its controlling procedure build or
modify the various fields of a microinstruction. Whenever a
microprogrammer chooses to add or insert a microinstruction,
a new microinstruction node is built and correctly placed
into the vertical linked list pointed to by ROUTINEtop. The
Build/Modify Microinstruction procedure is then entered. 1If
the microprogrammer chooses to modify an existing
microinstruction, the correct microinstruction is found
based upon the count field provided by the microprogrammer.
When a new microinstruction is being built, a pointer will
point to the new microinstruction node which was added to
the linked list. This pointer is passed to the Build/Modify
procedure. The menu for this procedure is provided as Fig-

ure 31. The microprogrammer is presented with the current

83

P

w00

(MODIFY)

&)

MODIFY
MENU
LOCATE
MICROROUTINE

DAL PR

CHANGE
NAME h-x:::)

NEW NODE BUILD/
BOTTOM MODIFY
LIST MICRO-

INSTRUCTION
FIND BUILD/
| SUCCEEDING MODIFY
NODE MICRO-
INSTRUCTION
FIND DELETE
| MICRO- MICRO- .
INSTRUCTION INSTRUCTION
Figure 30

Modify Microroutine Logic

AT A e 2aian i Suan

LIST
MICRO- _@
ROUTINE
DELETE
CURRENT
MICRO-
ROUTINE
|
|
J/
EXIT)
Figure 30 Con't
85 :
-1
ot
=)
T e S e e e ’,"-'.*"S‘,;L:'." L e L

"Bl
.

>

«? ¥ .7
.

Ty
.

T
Pa T
-

CASCIN "

IS N

NN e,
LR PO W v

rai
. e

-

o o B v e

\ UOTIONIISUTOIDTW AFTPOW/PTINd
1€ @anbtd

\ : UOTIONIISUTOIDTW JUSIIND 9Y3l NOANVEV Pue NINLIY O3
2 UOTIONAISUTOADTW IUSIIND 9Y3 AAVS Pue NinNLIY ©3
g nusw STyl Y3ITM dTIH 103
3 SpUBUO) SNOSURTTIOSTW Pue XYOWIW IOJ
A UOTIONIISUTOIDTW FO uorirzod YIONINOAS AFTpow /pITng O3
' UOTIONIISUTOADTHW FO uotiraod IV AFTpow/piing O3

86

<CUEID AL

ue adAg
" 2Op O3 3uem nok op Ieym

. XXXXXXXXXXXXXXXX AXXXKX XXX XX XXXXX KAXXXXXKXXXXXXXXX XX
dAININ0IS SNLYLS /LAIHS a1y Iunoy

) ST UOTIONIAISUTOIOTW JUBIAND BYL

NNIW NOILOYNILSNIOYDIW AJIJOW/AT1INg

binary and hex representations of the microinstruction. A
default value is used for new microinstructions. The micro-
orogrammer may choose to build/modify the ALU portion of the
microinstruction, build/modify the Sequencer portion of the
microinstruction, or perform miscellaneous functions such as
memory writes, loadina the Instruction Register, and placing
an outout from the AM2904 onto the Y bus. The microoro-
grammer can also receive help with the menu, or she can
return to either the Build Microroutine Menu or the Modify
Microroutine Menu. Prior to exiting this procedure, the
microorogrammer must decide if the completed microinstruc-
tion is to be saved or destroyed. The loagic and the

recursion of this procedure is demonstrated in Figure 32.

C. THE AM29203 ALU MENUS

The most complicated part of the system is developing
the ALU ovortion of the microinstruction. If the microvro-
grammer were using a manual microorogramming system, she
would have to keep track of restricted ALU source choices,

the need to perform up or down shifts, to make status

decisions, the possible values for the carry-in, and the

functions or sources which require a value in the Branch

Address Field of AM2910 Sequencer portion of the micro- gi
instruction. The master AM29203 ALU procedure ensures that -
all fields of concern within the microinstruction are com- Eﬁ
pleted, provides the correct menus when choices are ;i

87 =

e "
-.n".._\.‘-.‘-

vt N e

-~ - T TN T T T T TR TR T e T e Y
e o w DR S S 2t 2 Sai S el At Sl B A A A A SR
N a Y aC L AL s R A S A B RSARRAELS . -

Pl
..............

(BUILD/MODIFY)

v \

BUILD/
MODIFY
MENU

MASTER
ALU
PROCEDURE

MASTER
2910 >
PRODUCER

A
MEMORY
&
MISC
, PROCEDURE
DELETE
| | CURRENT
MICRO
INSTRUCTION
: 2
RETURN) .
A L
s
o
)
AR
S0
| S
Figure 32 =3
Build/Modify Microinstruction Logic RN
88 o)

D

o W TR TA Y Y N - A gl e 2t el T —
R BEMNICN T T N AP b AP S R gl S AN AN A M et S B St sl sufl Sl 2 T T I TN NI

D

X BASIC OO
BASIC CARRY SPECIAL CARRY IN
FUNCTION IN FUNCTION SHIFT
SELECT SELECT LINKAGE
SOURCE SOURCE
SELECT SELECT
|
DESTINATION SHIFT
SELECT LINKAGE
L
REGISTER RAM
ADDRE: . DESIGNATION
SELECT
OUTPUT &
INSTRUCTION
ENABLF,
STATUS STATUS
REGISTER ACTION
T
(ALU :) <
Figure 33 o
ALU Logic
89 ™
oy
R
T:‘:‘J
e e T e T T T L S T -3

restricted, and checks for possible conflicts among the
various fields. As an aid in following the sequence of
actions for completing the ALU portion of the microinstruc-
tion, Figure 33 is provided. The menus are presented in an
order that provides for subordinate fields. For example,
the function chosen by the microprogrammer will determine
the allowable ALU operand source. The specific menu which
presents the allowable choices will be displayed; a general-
purpose source menu requiring the microprogrammer to remem-
ber the restrictions is not uéed. Field conflicts can exist
with the Branch Address Field, the Shift/Command Field, and
bits I5-1p of the AM2904. The system either warns the
microprogrammer of a conflict or automates the the resolu-
tion of the conflict.

MASTER AM29203 ALU MENU

Count ALU SHIFT/STATUS SEQUENCER
XX AXXXX XXX KXXXXXKXXX XX XXX XXX XXKXXXXX XXXXXXXXXXXXXXXX
FFFF FFFF FFFF

The X's indicate bits which are not yet defined

The defaults for the AM29203 are
Register Address Select - bits 47-45 A,B Pipeline 11
Instruction Enable - bit 44 - Disable =1 1
Output Enable - bit 43 -~ Disable =1
Source - bits 42-40 - DAQ = 111
Destination - bits 39-36 - YBUS = 1111
ALU Function - bits 35-32 - OR = 1111

What do you want to do?

Type a B to choose ALU BASIC Functions
S to choose ALU SPECIAL Functions
H for HELP with this menu
R to RETURN to higher level

Figure 34

The first menu presented to the microprogrammer is the

Master AM29203 Menu - Figure 34. The microprogrammer must

90

Tt e N
NPT <o’

B
" S % A
'L" -

SEREREIT M ST

T T YW WG YT
. AR e i LA M AT N S R AT B S A A a0 e/l Y WP -~ S — N—

A - « . - 3
- - L e Y AR e S sen B Bnen. sentaase Sud-

Conse_)
|

BASIC
FUNCTION
SELECTION

SPECIAL
SOQURCE
MENU

SOURCE Y
RESTRICTER 1

J

<

GENERAL
PURPOSE
SOURCE MENU

Y CARRY IN
CARRY IN | MENU

" J

DESTINATION
SELECTION

vy | SHIFT
LINKAGE
MENU

/N]
4

(: CONTINUE ’

Figure 35
Flow for Basic Functions

91

.
Lo
---------- . - .
..... ..-"<. B . ST ’ : o
o . P . - e - e e ... T ooty e AT
RN A AN A LR e N . S BRI ISE D RS A S .)
R S T AR A SRR
Py atatm e PR SR W W AP AL L I R Tt DS A
e PORPS R Sy Iy I TR . W TS I B

...........

choose a basic ALU function or a special ALU function if she
desires to continue processing., Two separate procedures
exist for the different choices of function. The two choices
are separate in the ALU sources allowed and the destination
field. The need for a carry-in or a shift linkage is also
determined by different fields depending on the choice of
type of function. The special functions have a restricted
set of ALV sources, no destination choice, and the shift
linkage is determined by the particlular function chosen.
The basic functions determine either a full or restricted
set of ALU source choices (whose restrictions differ from
those for the special functions), require a destination
choice, and base the shift linkages on the destination
choice. Both functions require reagister address selection,

output and instruction enables, and status processina.

AM29203 ALU BASIC FUNCTION MENU

Enter the value correspondina to the function yvou wish to
perform

[N
=2

- 1 + Carry-in

- 1 + Carry-in

- 1 + Carry-in

rry-in

t 8) + Carry-in
Carry-in

t R) + Carrvy-in

R
S
S
Ca

E0+0+ 11 10

QZ =

exclusive nor S
exclusive or S
exclusive or S

nor S

nor S

nand S

or S

for HELP with this menu
to Return to higher level

WIMOOOATPPOOIIINNLWNOHD
mmmmmmgmmymmagmmgm
LTI I T OO O T 1 O O T T A O
oDV~ ~NDONET

_ Figure 36 '
Basic Function Selection

92

"LA.'MJ_i"

Proliatt A s 20adh Yt Thgh S0 Shir T b Mo dh Sk Aot Sh ane ot Revun Mo Jhaleat ——r T — N D B e S Sad Jenit St aedt i adicas B 2 BVe oI B i
W e S e W T T T Y TR TS PRI A AR R I PR A LA A PSP S S B AR A e Bt

The Basic Function branch for microinstruction completion
is shown as Figure 35. The first menu presented to the
microproqrammer is the Basic Functions Selection Menu. The
possible basic functions are listed in Figqure 36. Should
the microprogrammer choose 1 - F = High, 5 F = (not S) +

Carry-In, 6 F = R + Carry-In, or 8 F = Low, the allowable

AM29203 ALU SOURCE SELECT MENU

F = High
F = R + Carry-in .
F = (Not R) + Carry-in
F = Low

The only Allowed AM29203 ALY Sources are
Operand R Operand S Mnemonic
RAM A Q Register RAMAO
Direct A Q Register DAN

Tyove a for RAMAQ

2
6 for DRO

H for HELP with this menu

R to RETURN to higher level

Figure 37
Restricted ALU Source Selection

All other ALlI basic functions allow one of the six ALU oper-

and sources displayed in Fiqgure 38 to be chosen. ALU basic

AM29203 ALU SOURCE SELECT MENU

The Source control default is DAQ

What do you want to do? o
Operand R Operand S Mnemonic :1

D

Enter a 0 RAM A RAM R RAMAB uﬂ
1l RAM A Direct B RAMADB S

2 RAM A O Register RAMAO -

4 Direct A RAM B DARAMR .

5 Direct A Direct B DADB NS

6 Direct A 0 Reaister DAO oy

H for HELP with this menu e

R to RETURN to a higher level -]

Fiqure 38 —

General-Purpose AL Source Selection o

93 -

e

........
........
.....
......

sources are restricted from a possible for six down to two.
These two choices and their menu are shown in Figure 37.

All other ALU basic functions allow one of the six ALU oper-
and sources displayed in Figure 38 to be chosen. ALU basic
functions 1 through 7 require a carry-in, and the Carry-In

menu is included as Figure 39. Once the ALU operand

AM2904 SHIFT/STATUS CONTROL CARRY IN MENU
You have chosen a function which fequires a Carry-in
What do you want to do?

Type a to select ZERO as the Carry-in

0
1 to select ONE as the Carry-in

2 to select Cx, the Z output of the ALU

3 to select the carry bit from the micro status register
4 to select the micro carry bit complemented

5 to select the carry bit from the MACRO Status Register
6 to select the MACRO carry bit complemented

H for HELP with this menu

R to RETURN to higher level

Carry-In Menu
Figure 39

sources and the carry-in have been chosen, the micropro-
grammer is presented the ALU Destination Menu which is
provided as Figure 40. The Choices made from this menu
determine the requirement for a shift linkage. Choices 0O
through 3 and 5 require a down shift to be chosen by the
microprogrammer; she is presented the menu of Figure 41.
The up shift menu is presented to the microprogrammer when
she chooses 8 through B or D from the destination menu. The
second shift menu is provided as Figure 42. The format of
these menus represents the shift linkage table that the
microprogrammer would usually refer to in a manual system.

[Ref. 13: p 5-18]

94

P Y S T Sl N
@ e e e e e e T e S e e e e e e el

S - S
e Tl T e e e e
RPN P P I PR R WL WL WA WK . WS |

a,

T Ay_ﬁ., i Aol At Mt At S A die

AM29203 ALMI DESTINATION MENU

Enter the value corresponding to the destination vou desire

for HELP with this menu
to RETURN to hiagher 1level

0 RAMDA F to RAM, Arithmetic Down Shift

1 RAMDL F to RAM, Logical Down Shift

2 RAMQDA Double Precision Arithmetic Down Shift
3 RAMQDL Double Precision Logical Down Shift

4 RAM F to RAM with PARITY

5 AD F to Y; Down shift Q

6 LOADQ F to Q with PARITY

7 RAMQ F to RAM and Q with PARITY

8 RAMUPA F to RAM, Arithmetic Up Shift

9 RAMUPL F to RAM, Logical Uo Shift

A RAMQUPA Double Precision Arithmetic Up Shift

B RAMQUPL Double Precision Logical Up Shift

C VYBUS F to Y ONLY

D OQUP F to Y; Up shift O

E SIGNEXT SI0O to Y(1i)

F RAMEXT F to Y; Sian extend least significant bit
H

R

Figure 40
ALU Destination Selection

95

..

AD-A154 235

UNCLASSIFIED

IMPLENENTATION OF A PROPOSED SYSTEM FOR AUTOMATED 2/2
HéﬁROCDDE GENERATIONCU)> NAYAL POSTGRADUATE SCHOOL

TEREY CA M E PROYANCE DEC 84
F/G 972 NL

R A WSl s g N At Al T e e Ry T— Ty T ~——y—r - -—
BIRA . BN CAL A . - N O . v

A _-j‘_.. - A.‘*..““.. A e aa .-..‘*.\-. PIGT P RPN L. = L - e’ W

'

-y

e ‘

& 12
0 B a
= w kg | |
= b ==, | 1

———
e —
———
——

21

Ir3

(3
Fe

o

B

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

AM2904 SHIFT CONTROL LINKAGE - DOWN SHIFT

Enter the value corresponding to the shift linkage you desire

AU RN ._.l

b 0 0 -> RAMn, N -> Qn =
- 1 1 -> RAMn, 1l -> On .
» 2 0 -> RAMn, RAMO -> Mc, Mn =-> On Y
- 3 1 -> RAMn, RAMO -> On w3
(- 4 Mc -> RAMn, RAMO -> On N

5 Mn -> RAMn, RAMO -> QOn

6 0 -> RAMn, RAMO -> On
. 7 0 -> RAMn, RAMO -> QOn, Qo0 -> Mc

8 RAMO ~-> RAMn, o0 -> On, RAMO -> Mc
3 9 Mc -> RAMn, 00 -> Qn, RAMO -> MC

A RAMO -> RAMN, Q0 ~> On

B Ic -> RAMn, RAMO -> Qn

C Mc -> RAMn, RAMO -> On, Q0 -> Mc

D Q0 -> RAMn, RAMO -> kOn, 00 -> Mc

E In exor I0vr -> RAMn, RAMO => Qn

F Q0 -> RAMn, RAMO -> On

H for HELP with this menu

R to RETURN to higher level

Figure 41
Down Shift Choices

96 R

N
& AM2904 SHIFT CONTROL LINKAGE - UP SHIFT
o Enter the value corresponding to the shift linkaage you Adesire

0 0 -> RAMO, 0 -> 00, RAMn -> Mc

1 1 -> RAMO, 1l -> 00, RAMn -> Mc
- 2 n -> RAMO, o -> Q0
- 3 1 -> RAMO, 1 -> 00

4 On -> RAMO, O -> Q0O, RAMn -> Mc

6 On -> RAMO, 0 -> 00

7 On -> RAMO, 1l -> Q0

8 RAMn -> RAMO, Oon -=> QO0, RAMn => Mc

9 Mc -> RAMO, Qn -> 00, RAMn -> MC

A RAMn -> RAMO, On =-> QO

B Mc -> RAMO, 0O -> Q0
» C On -> RAMO, Mc -> QO, RAMn -> Mc
- D On -> RAMO, RAMn -> 00, RAMn -> Mc
- E Qn -> RAMO, Mc -> QO
= F Qn -> RAMO, RAMn =-> QO
o H for HELP with this menu

R to RETURN to higher level
- Fiqure 42
s Up Shift Choices
= .
-~ 13 1
: :
- .--1
: .
- ™3
. d
. 97 o
N o
- :_._<
O

- 200 wie -onn e T Ba it ot T AL S LA i et/

- ww

.- i'a LV
PR

g DO

PR MRV IR

P
2 Do

v 4

PRE RN

":‘

P

(: SPECIAL :)

SPECIAL
FUNCTION
SELECT

S ana o e e Sene 2 3
IS A

CARRY IN
MENU

SHIFT

SHIFT
LINKAGE
MENU

SOQURCE
MENOU

(jCONTINUED j)

Figure 43

Processing of a Special ALU Function

98

'Lfl LS
LI)
.

AM29203 ALU SPECIAL FUNCTION SELECT MENU

Enter the value corresponding to the function you wish
to perform

DR EHDODOPPROVOEIOUAWNLOR O

K R
............

Unsigned multiply

BCD to Binary conversion

Multiprecision BCD to Binary conversion

Two's complement multiply

Decrement by one or two

Increment by one or two

Sign/Magnitude to two's complement conversion
Two's complement multiply

BCD divide by 2

Single length normalize

Binary to BCD conversion

Multiprecision Binary to BCD conversion
Double length normalize, First division op
BCD ADD

Two's complement divide

BCD subtract F = R - S - 1 + Carry-in

Two's complement divide correcticn and remainder
BCD subtract F = S ~ R - 1 + Carry-in

for HELP with this menu

to RETURN to higher level

Figure 44

99

<t
4

-
.
L3

AN
.lll

)

[.
P)

I T
et Tt

’

PRI
LA
TN

.
y'

.
PR A
1t
IR

The a¢ >ns which take place when a special function is
desired are depicted in Fiqure 43. The process begins with
the Special Function Menu - Fiqure 44, The choice made by
the microorogrammer from this menu will determine the
requirement for a carry-in and for shift linkages. There
are no destination choices for the ALU special functions.
Only four ALU operand sources are permitted, and the menu

for these choices is shown as Figure 45. The same carry-in

AM29203 ALU SOURCE SELECT MENU
You have chosen an AM 29203 Special Function

What do you want to do?

Operand R Operand S Mnemonic
Tyope a 0 RAM A RAM B RAMAB
1 RAM A Direct B RAMADB
4 Direct A RAM B DARAMB
5 Direct A Direct B DADB
H for HELP with this menu
R to RETURN to higher level

Figure 45

and shift menus used by the basic functions are used by the
special functions. Special function choices 0, 2-6, 8,9,
and A-F require a carry-in to be chosen; a down shift is
needed for choices 0-2 and 6; special function choices of

9-A will cause the up shift menu to be presented to the

=

microprogrammer. {@
0

After these menus have been completed for the chosen o

-1

type of function, the microprogrammer is ready to decide on x 7
100)

L

N

NS

ce Y

:]

‘ALU CONTINU?:)

REGISTER

ADDRESS
SELECT

RAM A
RAM B DESIGNATION
MENU

y | RAM B
DESIGNATION
MENU

RAM B

N

b

INSTRUCTION
AND OUTPUT
ENABLES

STATUS
MENU

STATUS
REGISTER

CHECK MENUS

N

(:EXIT ALU ;> -

Figure 46
Remainder ALU Processing

101

et e e e, e ettt ettt a T U
» e FONL AR VL T - e 4t . - ST e - LI VIY VAR JE VA YL R PR ST S S S TR AT -

P PRI TP . e e et e e T e LA e e N R N Rt M T -, L .
RO, T PR PO oA ST o VAN A PWRE RSO WA Rl U TR AP WA SO TN WP T A o S T I A I)

‘.. -.' -'..-' .
RS

[P N I ST A T A AT A A
VB WL ST PRI W s o P WA PRI Wy WA AR Y e

the register address selection, the output and instruction
enables, and the state of the two status registers. The
flow for this part of completion of the ALU portion of the
microinstruction is covered by Figure 46. This part of the
overall ALU process begins with the AM29203 ALU Register
Address Selection. The possible choices are shown in Figure

47. 1If the microprogrammer makes a choice which will cause

AM29203 ALU REGISTER ADDRESS SELECT MENU

The default is Source A - Instruction Register, Source B -
Instruction Register, Destination - Instruction Register

Enter the value corresponding to the Register Address you
desire

Source A Source B Destination C
0 Pipeline Pipeline Pipeline
1 1Instruction Pipeline Pipeline
2 Pipeline Instruction Pipeline
3 1Instruction Instruction Pipeline
4 Pipeline Pipeline Instruction
5 1Instruction Pipeline Instruction
6 Pipeline Instruction Instruction
7 Instruction Instruction Instruction
H for HELP with this menu
R to RETURN to higher level

Figure 47
Register Address Select

the Instruction Register to be the register address, a
warning will appear telling the microprogrammer that the
Instruction Register must be loaded with the correct
register designation in a previous microinstruction. Should

the microprogrammer choose a register address where Source A

102

L)
v
P

PPy

L A) b AP S A e’
NS WA M MM WP YNNI

e e .
P T
A
s

W,._‘ Sl e G Aatied e A S MR A S S AT AT SN A g o Cafi ot - " oA o adi s S e o

is the pipeline, another menu will be presented which allows

the microprogrammer to choose the RAM A register desired.

AM29203 ALU RAM REGISTER A MENU

Enter the RAM A Register you wish to use

O RAM A Register O

1 RAM A Register 1

2 RAM A Register 2

3 RAM A Register 3

4 RAM A Register 4

5 RAM A Register 5

6 RAM A Register 6

7 RAM A Register 7

8 RAM A Register §

9 RAM A Register 9

A RAM A Register A

B RAM A Register B

C RAM A Register C

D RAM A Register D

E RAM A Register E

F RAM A Register F

H for HELP with this menu
R to RETURN to higher level

Figure 48
RAM A Designation

This menu is included as Figure 48. If the Source B chosen
AM29203 ALU OUTPUT AND INSTRUCTION ENABLES .
Do you want the ALU results to go anywhere? ;%
Type a Y for YES; }ﬂ
N for NO)
Do you want to change the contents of any ALU register ;ﬂ
during this ALU operation- L
Type a Y for YES: -
N for NO "
Figure 49 lj
Output and Instruction Enables o
103]
R
. ->\
ey
A
=3

RIS
Rl S . Can

-0 AR “« et . - «® . . . %
" S " B . - - - N . Tt ot . P v, . AR L o5 . e Y, . e -
TG, TG DT A I PRI 3 6 2 P R SR I AP NS AL A TR s P e it ettt ntciteinteies ot dnndindl

.............

STATUS
MENU

Y
NO CHANGE END STATUS)

MICRO UPDATE
STATUS AM2904 DATA
MENU STRUCTURE

MACRO UPDATE
| STATUS AM2094 DATA
MENU STRUCTURE

Figure 50
Status Checking

104

..................

CHh Tt S A S ACEe Acan brvi dueas & 4 S —r L~ -

is the pipeline, a similar menu will be presented for RAM B
register selection. The enable menus are very simple and
require two yes or no answers. The menus for the enables
are shown in Figure 49.

The last decision that must be made concerns the status
registers. The logic used to implement the decision can be
found as Figure 50. The bits affected are I5-If of the
AM2904 portion of the microinstruction, and the choices from
these menus interact with the data structures and the
procedure WALKCHOICES described in an earlier section. The

first menu which appears is figure 51; it is iteratively

AM2904 STATUS REGISTER MENU

There are two status registers to control
Micro status register
MACRO Status Register

What do you want to do?

Type a O to make NO CHANGES to the stauts registers
to change the Micro status register

to change the MACRO Status Register

for HELP with this menu

to RETURN to higher level

04N

Figure 51
Main Status Checking Menu

displayed until the microprogrammer indicates a choice of O

to not change the status register or a choice to Return.

Both the micro and the Macro status registers can be
controlled. 1f the microprogrammer desires to change the
micro status register, figure 52, the Micro Status Register -

105

..’..‘ N

S
¥
o

LI L o)

=

Wt s T T LT e N . LA SR
- . K SO SO N .
e e e e . RO B R

tet t" ¢~ .‘--'
~ - . - - - . e - - ~ <
e e et e e Y ety \.‘ NS TS WO, e

P Tt el e e

e

.

Coa o

A i o A o

.

LA AP a0

S

I

T

¢ 2anb1g

18a81 I3yb1y 03 NNLIY ©3

nusw sTY3l Y3 TMm JdTdH 103

193STba1 snjels oOadOTW 9yl ut bel3 MOTJINIAO 243 Atuo 38§
I93sTbaa snjels OadIW @Yyl ur befI MOTIIIIAO ay3z Afuo 3esay
I93sTba1 snjels OadTW 9yl ut befj NOIS 3yl Afuo 388

I93s1ba1 snjels oxoTw 8aYyj url beyy NOIS

@yl ATuo 3asay

I93sTboa1 snjels OIOTW 3yl ut belj NOIS ay3z A(uo 38§

I93s1bax snje3s oaoTW @Yl ut beTF AWYVD

oyy Afuo 39say

1938Tb21 sniels OJIOTW 8yl utl bell oIz a2yl ATuo 39§

193sTba1 snjels OIDTW 8Y3l ur Hel3 OuIZ

ITQ AY¥YD 3daox® ‘1 woxy I93sT1bdI snie3s
MOTJY3IAN0 3Idedx® ‘] woxy I93sTbax snijezs

S LNdNI JIVIAIWWI 3@yl wolay I83s1box snjels
I193sTHbd@1 snjels OIDTIW 3yl utr g o3

1938Tba1 snje3ls OIdTW 2yl pue I93sibay snje3s

23z Aljuo 39s9y
OIDTW TI® peO1
OIDTW T1T1® peo]
QIO TW 9yl peo]
S3Tq 1Te 3I9say
oaoep aylx demsg

19381bax snje3ls OIDTIW UT S3ITQ ([e 3I3S

1938Tbaa snje3ls OIDTW 8yl ojutl I93s1Hay sn3e3s

211S9p nOA uot3ide 8yl o3 bulpuodsaiiod onfea ayl Ia3ug

OdOVIW 2yl proT]

NNAW ddLSIOFY SNILVLIS OVDIW ¥06ZWY

OrMANMNMIYFVONODOOCOTVAOMT X

106

A

At - T et
bW B

«
o e

WA P e D A I R U Y

e

e dad

menu will be presented. The choices from the Micro Status
Register Menu will reflect in the earlier-described set
named CHOICESset, the specific choice from this menu will
appear in the array CHOICES, and all possible bit patterns
for this choice will be entered into the I5-If linked list.
The same actions will be taken if the microprogrammer
chooses to change the Macro Status Register. The Macro

Status Register Menu is included as figure 53.

AM2904 MACRO STATUS REGISTER MENU
Enter the value corresponding to the action you desire

Load the Y inputs into the MACRO Status Register

Set all bits if enabled

Swap the MACRO Status Register and Micro status register
Reset all bits if enabled

Swap the MACRO CARRY bit and the MACRO OVERFLOW bit
Complement all bits

Load all MACRO Status Register from I, Invert Carry

Load all MSR from I

for HELP with this menu

to RETURN to higher level

THNOAUM B WO

Figure 53

D. AM2910 SEQUENCER PORTION OF THE MICROINSTRUCTION

An equally important but less complicated portion of the
microinstruction is organized around the AM 2910 Sequencer.
When the microprogrammer chooses to complete this portion of
the microinstruction, the Master AM2910 Menu is presented.
This menu is found as figure 54. At this point, the micro-

programmer will continue by indicating the desire to select

107

P ATIL SN SN A AN el M S S e el e SRR ST ae ssua LAl A Ml a4 av L ek Eeour g —T T T —————

EShAr A - el

field of the AM2904 portion of the microinstruction. The
hex value chosen from the up or down shift menus is placeAd
in this field as is the hex value for a desired memorv
command., A conditional test requires a hex "9" in this
field to enable the condition codes and the enahle the out-
put of a conditional test. The shift values are in the
range of "O" throuah "F"; the memorv command values are "O"
through "A" and "A" through "F.," It is impossible to do a
conditional test in the same microinstruction as a memory
command because there is no common hex value shared between
these actions. A shift linkage and a memory command can
occur together only if the hex values of the shift linkage
match the bit pattern for the memory command. A shift
linkage and a conditional test may onlv occur simultaneously
when the shift linkage chosen is a "9."

A specific conditional test must also be considered when
discussing the Shift/Command Field - a forced pass. A
forced rass will take place either when the command enabhle
bit is disabled or when this hit is enabled and the value in
the field will allow CCEN to be high. These values are "O"
through "6" and "A" through"D." The shift linkage must also
match the memory command. For a forced pass, it is neces-
sary to first check the command enable bit. If it is not

enabled, the proposed system will check to see if the shift

121

With the AM29203 Evaluation Board, three fields within the
microinstruction are sites for potential conflicts: the
Branch Address Field, the Shift/Command Field, and the bits
I15-1p in the AM2904 portion of the microinstruction.

The Branch Address Field is mutually-dependent upon the
register address selection field associated with the AM29203
ALU and the AM2910 sequencer command field. If the register
address selection indicates that the pipeline is the source
for a register designation, this register designation is
placed in the Branch Address Field. A sequencer command
which requires a branch address or a value to be placed in
the register/counter will put that address or value into the
Branch Address Field. If the microprogrammer chooses a
register address selection which specifies the pipeline as a

source, the sequencer command will be checked. If both

fields require use of the Branch Address Field, a warning
menu will be displayed. Should the microprogrammer select a
sequence command which causes a value or address to be :J
placed into the Branch Address Field, the register address
selection will be checked and a warning about a conflict
presented if needed. 1t is the microprogrammer's "
responsibility to correct the situation. QE
Three other actions which interact are the requirement]
for a shift linkage through the AM2904, the selection of a 3
memory command, and the need to perform a conditional test. o

These three actions use the four bits of the Shift/Command . <

120 o]

P RPN 0 2 1 00 SN At St SN S A I A T ST L A i SN A A Wi

microprogramming system provides an easy-to-use and secure
method for creating microcode which solves the problem

outlined in the microprogrammers' algorithm.

V. SUMMARY, QUESTIONS, AND FUTURE RESEARCH

A. SUMMARY OF MUTUALLY DEPENDENT FIELDS

The greatest contribution of the proposed microprogram-
ming system is the handling of mutually-dependent fields. A
vertically-organized microinstruction is harder to complete
because several microoperations interact and use a specific
field as a conflict point. A microprogrammer may desire to
perform two microoperations in one microcycle. Logically,
it may be reasonalbe to perform these operations at the same
time, and they could be done at the same time with a
horizontally~-formatted microinstruction. These two micro-
operations may store the binary representation for the two
separate actions in the same field. What happens when the
binary representations are different? 1In a manual micropro-
gramming system, the microprogrammer must remember that
certain fields are shared and check for potential conflicts.

The proposed microprogramming system provides a
mechanism for releasing the micréprogrammer from the error
prone and tedious process of keeping track of potential
conflicts. The system will either warn the microprogrammer

of a conflict, or it will attempt to resolve the conflict.

119

P T e T T T N T T L T YT T v .

"9." 1If the microproarammer chooses to do hoth a condi-
tional test and a memory command, a conflict will exist.
None of the memory or miscellaneous commands allow for the
hex value of "9." The microprogrammer will be warned if
such a conflict exists as she builds the microinstruction.
She will probably have to perform the desired functions with
two microinstructions in the event of a conflict.

The written description of the oprocess of creating
microroutines and microinstructions is tedious and at times
difficult to understand. Although samples of the menus and
several flow charts are included, it seems that there are
many details that must be rememhered. Many actions are also
occuring; not only are the fields in the microinstructions
beain completed, but linked list vointers are updated and
conflict checking occurs. It should be kept in mind that
the microporgrammer, when using this system, is raised
above the level of detail presented in this chapter. The
sequencing of menus is automatic and predicated upon the
user's choices. The process of checking for conflicts
between mutually-dependent fields is invisible to the micro-
programmer. The existence of the two linked lists, one as a
master data structure and the other for the AM290N04 desian
oroblem, is unknown to the microproarammer. All that she
needs to use this system is her completed algorithm and a

knowledae of the hardware to be controlled. This provosed

118

.{"- et
\ e
k P

. g D [

5
T e h

4

. P
et T !
P I I A
PSRRI Y

!
-

PP

Dl
P T R

o,
I R

A

S
Al‘ [AEN

P
e e
2 outa

- e .
ol . e
DI § alela'n e

needed, the AM2904 design data structures will be updated

since the Y output is one of the five classes of actions
reflected in the array, set, and linked set. A new vertical
linked list will be added containing the bit patterns for
the choice from the Y output, and this new list will be
pointed to by topYOUT.

The possibility of conflict in the shift/command field
exists. If the ALU special function or the ALU destination
chosen required a shift linkage to be established, the shift
bit will be enabled and the shift linkage chosen by the
microprogrammer will be stored in the shift/command field.
If the bit pattern for the command action just chosen
differs from the bit pattern for the previously entered
shift linkage, a conflict exists. The microprogrammer must
be warned. She may have to consider a different ALU special
function or ALU destination, choose a compatible memory com-
mand, or perform the desired microoperations in two separate
microinstructions. A shift and a memory command can only
coexist in the same microinstruction when their bit patterns
are identical.

A conflict may also exist whenever the microprogrammer
has chosen to do a conditional test. The conditional test
enable (CCEN) and the output enable conditional test (OECT)
must both be a zero for the output of the conditional test
to appear on the Y bus. The value in the four bits of the

shift/command field which generates these zeros is a hex

117

b ".'

..\

.
PRl
s %9 ‘s

'. -'I'l
cloale

XA

-

’
o
| M

..... e e e e i e M e A e e A i S s Tt I B BB e a0 e e e —
RN - ot = i - - e ™ .. - N - VT LY e . PO T .-, . - . - - .

MEMORY AND MISCELLANEOUS COMMANDS MENU

What do you want to do?

Type a O for OEYO04 Enable 2904 Y-output
1 for LDIR Load Instruction Register
2 for CONAB Register Address thru ALU to IR
3 for RDMEM Read Memory
4 for WRTMEM Write to Memory
5 for CONBUS Enable constant to B-bus
6 for IFTCH Instruction Fetch
A for READ Read enable
B for WRITE Write enable
C for SAVESTAT Write 2904 status to memory
D for DAVECON Write constant to memory
H for HELP with this menu
R to RETURN to higher level

Memory and Miscellaneous Commands
Figure 62

AM2904 Y OUTPUT MENU
You can output something from the AM2904 onto the Y-bus.
What do you want to do?

Type a 0 to output the Micro status register

1 to output the MACRO Status Register

2 to output the IMMEDIATE inputs from the ALU
3 for NO OUTPUT

H for HELP with this menu

R

to RETURN to higher level

Y Output Menu
Figure 63

Y

: <

7

_‘ ‘o

.:1

) L

I

=]

116 R

N

o

R

AR

3

<

S e S e

specific test to be performed is then chosen from this
second menu. The conditional test is one of the five
classes of actions that determine the bit pattern in bits
15-10. The CTEST will be set in the set CHOICEset, and the
array CHOICES will reflect the test condition chosen by the
microprogrammer. The bit patterns for that choice will also
be added to the linked list, and this vertical list will be

pointed to by the variable topCTEST.

E. MEMORY COMMANDS AND MISCELLANEOUS FUMCTIONS

If the microprogrammer requires an interface with the
main memory or desires to perform some miscellaneous
commands such as instruction fetch, pass a register address
through the ALU into the Instruction Register, or load the
Instruction Register, she will need to access the menu shown
in Figure 62. This menu is called from the Build/Modify
Microinstruction Menu. There are eleven possible choices,
and the choice made by the microprogrammer will be reflected
in the microinstruction by looking at the command enable bit
and the four bits in the shift/command field. The command
bit will be enabled, and the four bits will contain the
choice from the menu. If the choice made by the micro-
programmer is either to enable the 2904 Y output or to write
the 2904 status to memory, the Y output menu is required.

This menu is included as Figure 63. If the y output menu is

115

Vi

0

g A A A

C e e e . s .
A B . .
I e R

. A B

LA s

What condition

Type a

DD EOOOTPPOONANAMNNALWNNHO

for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for

to RETURN to higher level

AM2904 CONDITIONAL TEST MENU
do you want reflected by the conditional test?

(SIGN exor OVR) or ZERO
(SIGN exnor OVR) and not ZERO
(SIGN exor OVR)

{SIGN exnor OVR)

ZERO

not ZERO

OVR

not OVR

(CARRY or ZERO)

(not CARRY) or (not ZERO)
CARRY

not CARRY

(not CARRY or ZERO)
(CARRY or not ZERO)

SIGN

not SIGN

HELP with this menu

Figure 61
Conditional Test Choices

114

microprogrammer; she may choose to force a pass, to force a
fail, or to test a condition. If she selects to test a
condition, two more menus may be required. The logic of
choosing the correct condition test is included as figqure
59; Figures 60 and 61 provide the two conditional test

menus. First, the microprogrammer must decide what type of

AM2904 CONDITIONAL TEST MENU
There are two steps to selecting a test condition
1) select a register to be used
2) select a test on that register

This menu selects the registers or two special tests which
combine two registers

What do you want to do?

Type a for the Micro Status register

0
1 for the MACRO Status Register

2 for the IMMEDIATE status inputs

3 for Immediate sign exor Macro sign
4 for Immediate sign exnor Macro sign
H for HELP with this menu

R to RETURN to higher level

Figure 60
Conditional Register Select

test to perform. Either one of two specific tests can be
done or a register for the test can be selected. If the
microprogrammer chooses to test either of the two status
registers or the immediate status inputs, the second

conditional test menu will be presented [Figure 61]. The

113

(iCONDITIONAL:)

.
L

I CONDITIONAL
REQUIRED
MENU

UPDATE
SHIFT/CMD \
FIELD

S DO

NS

N -','-':-l" j’..

'TEST CONDITION

A
.

’l‘l A

s

Z

SELECT UPDATE

REGISTER & AM 2904
TEST STRUCTURE]

- v

» UPDATE
: AM 2904
A STRUCTURE

(3 B
g CONDITIONAL »
ﬁ? Figure 59 . f
7 Conditional Test Select Flow Chart ;

112 =~

e N —— LAV Sl S Joath Dedh T Warth e Mg et Dt Sl ot cwnth Jn St Jueagt dacit Jnnt A pes e o e

further action is needed, the Master AaM2910 Menu will be
disvlayed to enable a return to the upper levels of the menu
hierarchy. If the selected sequencer command requires a
microprogrammer supplied value for the Branch Address Field,
the Branch Address Menu will be presented for completion.

This menu is included as Figure 57.

AM2910 SEQUENCER BRANCH ADDRESS MENU

You have chosen a command which requires a value in the
Branch Address Field

The default is 3FF
Type your three-digit branch address
a H for HELP with this menu
R to RETURN to higher level

Fiqure 57
Branch Address Field Completion

A sequencer command may provide for conditional flow of
control within the microroutine. Whenever this type of

command is selected, a Conditional Test Menu wil be pre-

sented. Fiaure 58 lists the choices available to the -~

AM2910 SEQUENCER CONDITION SELECT

You have chosen an AM2910 Sequencer Command which requires a -
conditional test -]

What do you wnt to do? ﬂj
Type a P for FORCED PASS -
F for FORCED FAIL e

T to TEST the condition T

H for HELP with this menu)

R to RETURN to higher level -

. P

Fiaqure 58 —

111 3

.:{

A AL AN M A SRR S v e i et e e ascan et b s B L AL

f ™~
{ AM 2910 4)

.

’

Al

i COMMAND 5

'

I_MENU [J
///}\\\\Y

{ RETURN >—
N s

NS

, g

!

VN i

¥ } i

POST COMMAND |
TO

MICROWORD :

P .
/// \y \ BRANCH
CBrancy > % ADDRESS

: . MENU
) —
N

[-
v | CONDITIONAL;

S

'
'
¥

OONDITION/-———-», TEST ;
Y, | MENUS . -
v N T ' s
K x '3 ’l
Y -
o
{ END 7910 ;) "3
-::‘.1
._'::'.1
Figure 56 3

2910 Command Flow Chart

110

a sequencer command or return to the Build/Modify Micro-

instruction Menu. 1f the choice is to continue, the list of
sixteen sequencer commands will be presented in a menu
provided as fiqure 55. The micropvroarammer will choose one

of sixteen commands.

AM2910 SEQUENCER COMMAND SELECT MENU
Enter the value correspondina to the command you desire

Jz Jump zero

CJs Conditional jump subroutine

JMAP Jump mam

cJe Conditional jump pipeline

PUSH Push/ Conditional load register/counter
JSRP Conditional jump subroutine via regqister or pipeline
cav Conditional -jump vector

JRP Conditional jump via register or pipeline
RPCT Repeat loop, counter not equal 0

RFCT Repeat counter, counter not equap 0

CRTN Conditional return from subroutine

CJPP Conditional jumpb pipeline and pop

LDCT Load counter and continue

LOOP Test for end of loopo

CONT Continue

TWB Three way branch

for HELP with this menu

for RETURN to higher level

W TEIOOQOTPOOIANANTIWNOHFHO

Figure 55
Choice of Seauencer Commands

The remainder of the actions for this vortion of the
microinstruction is determined by the choices for the
sequencer command. Fiqure 56 illustrates these subordinate
actions. Three possible paths can be followed: No further
choices are required, the Branch Address Field must be

completed, and/or a conditional test is required. If no

109

I O LIRS

v
e 8 s 0o

»

Fe e

+~

Cafll gPe e

S S S o

Ty

R

-

PR AR

vy

G 2anbtg
nuap Iaduanbsag asjsel

ToadT I9UYbTY O3 NINLIY O3 ¥
nuaw STYl Y3IItm JdIdH IoF H
ANVAWOD ¥dONINOIS 2yl I091ds o3 (o e adiy

2Op O3 3ueMm NOA Op 3eyMm
dd€ - PTRTJ SSaIppV youeag
d = snuljuoc) - puerwwo) iaouanbag

aie Jxaouanbas QTgzZWY 2yl I0J s3Tneiap ayl

pautjop 39K 30U 8aI® UDTYM S3ITQ 93BDIPUT S,X 9YL

dd4q4 dd4d4 ddd4
AXXXXAXXXXXXX XXX AXXXXXXXXXXKXXKXXX AXXXXXXXXXXXXXXX XX
JHIONINOIS SNLV.LS /LA IHS v IUnoD

INIW YAONINDIS OT6ZWY YILSVW

108

linkage value is in the correct range. Whenever a conflict
is present, the microprogrammer will receive a warning menu.

The resolution of conflict in bits 15-10 of the AM2904
Shift/Status chip has already been discussed at length. The
goal with this field is to examine all possible bit patterns
for the choices made, and automatically find a compatible
pattern.

The master data structure is used to keep track of
potential conflicts. Each source of a conflict is
represented by a set named CONFLICTclasses. I1If a micropro-
grammer should chose the pipeline as a register address
source, RAM will be placed in the set. If the microprogram-
mer should choose the pipeline as a register address source,
will be placed in the set. If the microprogrammer then
selects a shift linkage, the member SHIFT pipeline will be
placed into the set. In the determination and resolution of
conflicts, the choices for the various actions are also
needed. The choice for shift and RAM will contain the hex
value selected by the microprogrammer from the menu. The
only fields of potential conflict which do not require the
maintenance of the actual values selected from the menus are
the register address selection and the AM2910 sequencer
command. They will only be placed into the set CONFLICT-
classes if the potential exists for conflict. 1In some
instances, the determination of conflict depends only upon

the membership in the set, such as a conditional test and a

122

LA St e Judh g Segh bt M S Jiath el Jouth Santh pedt Sec et el S iomse SeL Sudh sutih st s P iy 4

memorv command. Other times the actual values of the
choices must be compared to find a conflict amona

mutually-dependent fields.

“
B. STATUS OF THE PROJECT }‘
The proposed microprrogramming system is not complete. 35
All selection menus are finished and accessible to the ;
microprogrammer. She has the ability to complete both the
AM29203 ALU and the AM2910 portions of the microinstruction. ;>
The mechanisms are also working which allow all actions on -i
the four upper level menus to be completed. All choices Z
from the Master Menu have been tested. The microprogrammer ;;
can also perform the additions, deletions, insertions, and ?f
modifications associated with the Build Microroutine and
Modify Microroutine menus. The overall linked list -
structure containing the names of the microroutines and i?
their associated microinstruction can be stored to and built :§
from a disk file. Li

The major design prohlem has been solved. The proposed
system will process conflicts bhetween mutually-dependent
fields. Earlier sections described the mechanics of
comparison. This information is stored with the
microinstruction because it is necessarv to know the most
recent choice made in each of the ten classes of action ';

which are a list of the fields where a conflict miaht occur

123

\--

-

CAMUN SR A M S Mt Wl AL RN S St el S Sttt Sl A S SR St e Bt T S et ST e S

or originate. The largest source of conflict - bits I5-If -
has been resolved with an automated technique to find
compatible values for the five classes in question. The
design decision in terms of the set membership and actual
choice comparison have not been implemented. The warning
menus are also not complete. The data structure for bits
I15-Ip has been designed, and the Pascal code for its
implementation is finished, but no testing has taken

place.

C. AREAS OF QUESTION

The first decision made which requires further inves-
tigation is the use of Pascal as the language for
implementation of the proposed system. It is not a language
well-fitted to an interactive menu driven system; no
facilities exist to clear a screen or to start a menu at the
top of a screen. Feature interaction in Pascal allows only
for static arrays. This restriction caused a heavy reliance
on linked lists because of their dynamic capabilities.

The second area of consideration is the linked lists and
the format of the nodes in the master linked list structure.
Was it necessary to always have the classes of conflict and
the choices within each class available at all times? The
nodes in the linked list were always visible to the entire

system. A less visible structure which provides for

124

Ty s YLy,

D
PRSP
Y

information hiding and whose purpose is the determination

and resolution of conflict must be considered as a possible

improvement in the system.

A last area of consideration is how the linked list is

L.-

:E used to resolve conflict among the five classes of action

.I which affect bits I5-Iff, Is a linked list the best approach
in terms of ability to solve the design problem? Also, is a
separate structure needed to determine conflict among the

#: shift linkages, memory commands, and conditional test? Are

these mutually-dependent fields of sufficient complexity to

require their own data structure?

D. FUTURE RESEARCH

The main thrust of future research should be the goal of

retargetability. Future researchers need to examine methods
where a microprogrammer can choose various pieces of
microprogrammable hardware and configure her own microin-
struction to control this microprogrammer-defined
architecture. Some of the concerns will be the identifica-
tion of mutually-dependent fields and the compatible values
that they may contain as well as the identification of
conflict. The microprogrammer will also need to be able to
select from existing menus or create new menus online. A
linkage will also be needed from the choices on the menu to

bits in the microinstruction. A future design problem will

125

i et
PP I SRSl

- UL S P S . Lte t e A ST et et ot A T PO PP P I I I
C N T T At N T e S e B T PO TRt B

RIS I A St S S I AN TIPS LI IR PR S S P AL R AR A A TR AT IR I R Y

. el . . AR R LA S PR I DTN T L R TR I R R LR L P
e e L P P S e N P T A S B 2 [YRR AR

k‘ - .I.A‘\--'_" > " >

SRV
al 8 & 5 ¢

e e
[PCIPLIAS
g8

Lot

N

PR
.

. .
..uj
ol

be the automated microcode generator for a user-defined

microprogrammable architecture.

E. CONTRIBUTION OF THE PROPOSED MICROPROGRAMMING SYSTEM
The AM290203 Evaluation Board is primarily used as a

teaching tool in microprogramming. The architectural desian

R e S e e e,

considerations, for both the chip layout and the
microinstruction format, reaquired a vertically-oraanized

microinstruction. The problem of mutually-~dependent fields

| &

was complicated and made the task of learning to microoro-
gram using this evaluation board dAifficult. The background
) idea when considering this thesis topic was to remove the
microprogrammer from the reguirement to remember and control
the various dependencies within the microword. The proposed
i system can be used by student microprogrammers, and the
system will make the task of producina microroutines easv

and secure.

» 126

..............

St o AR S AN Sl S Ar i T ir Bl SR A S A Al SPIA A S SO g

LIST OF REFERENCES

l. Wilkes, M.V. and Stringer, J.B., "Microprogramming and
the Design of the Control Circuits in an Electronic
Digital Computer", Computer Structures: Principles and
Examples, McGraw-Hill, 1982.

2. Husson, Samir S., Microproarammina: Principles and
Practice, Prentice-Hall, 1970.

3. Patterson, David A., "Microprogramming".

4. Hamacher, V. Carl, Computer Oraqanization, McGraw-Hill,
1978.

5. Hayes, John P., Computer Organization and Architechture,
McGraw-Hill, 1978.

6. Salisbury, Alan B., Microproarammable Computer Architec-
tures, Elsevier, 1976.

7. Rauscher, Tomlinson G. and Adams, Phillip M., "Micro-
programming: A Tutorial and Survey of Recent
Developments”, IEEE Transactions on Computers, Vol. c-
29, 1 January 1980.

8. Patterson, David A., "An Experiment in High Level
Lanquage Microorogrammina and Verification", Communica-
tions of the ACM, Vol. 24, October 1981.

9., Patterson, David A., Lew, Karl, and Tuck, Richard,
"Towards an Efficient, Machine-Indevendent Lanauaage for
Microproaramming®", Transactions of the IREE, 1979,

10. MacLennan, Rruce J., Principles of Programmina Lanau-
ages, Holt, Rinehart, and Winston, 1983.

l1. White, Donnamaie E., Bit-Slice Desian: Controllers and
ALUs, Garland, 1981.

12. Hartrom, Thomas C., Lamont, Gary B., and Ross, 3alan A.,
AMD AM29203 Evaluation Board User's Guide, Preliminary
Draft, Advanced Micro Devices, 19R3,

13. Advanced Micro Devices, Ripolar Microorocessor Logic and
Interface Data Book, 1983.

127

ROV WO

1
SRS |

- P P U S S I S
PVRPAPLIPS TR AN WPl S W

MDA NI it LA A e T e ,._-~="_‘-7' S e e Y T TR R R T N S S T T s T AN G R T UL LS AT

INITIAL DISTRIBUTION LIST

No. Covies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22314

2. Library, Code 0142 2
Naval Postagraduate School
Monterey, California 93943

3. LtCol Alan A. Ross, Code 52Rs 4
Naval Postgraduate School
Monterey, California 93943

4, LT Marcia E. Provance 2
Fleet Intelligence Center, Pacific
Pearl Harbor, Hawaii 96860

5. Computer Technology Programs, Code 37 1
Naval Postgraduate School
Monterey, California 93943

128

i e e e e s e . .
LI T A SR, P T e AT P R P R TR RS P R A I UL U P
A A A T T A A P e T R R N L S R S > . A A e
DEVARITLSF DI SRRVSRE IO ISR CIC IR CPETORICIEIEICIE VWSS RS RV VAR s AU A

s e Ta T VAR I N
. St e e o' SO e Te Te e e ey
PO RTINS PR RV RN

v.' i

6-85

- Cihet 2
e At

et

A L L it
N S A) "
B

-
-

At Y
LY
-

